
Morphik Logo

Morphik Core
Note: For our hosted service: https://www.morphik.ai (https://www.morphik.ai). We also deploy our Morphik on prem or VPC,

happy to chat: https://cal.com/adityavardhan-agrawal-x6jyhq/30min (https://cal.com/adityavardhan-agrawal-x6jyhq/30min)

licenselicense MITMIT
 (https://github.com/morphik-org/morphik-core/tree/main?tab=License-1-ov-file#readme)

pypipypi v0.1.4v0.1.4
 (https://pypi.org/project/morphik/)

discorddiscord 10 online10 online
(https://discord.gg/BwMtv3Zaju)

What is Morphik?
Morphik is an open-source database designed for AI applications that simplifies working with unstructured data. It provides

advanced RAG (Retrieval Augmented Generation) capabilities with multi-modal support, knowledge graphs, and intuitive APIs.

Built for scale and performance, Morphik can handle millions of documents while maintaining fast retrieval times. Whether

you're prototyping a new AI application or deploying production-grade systems, Morphik provides the infrastructure you need.

https://www.morphik.ai/
https://cal.com/adityavardhan-agrawal-x6jyhq/30min
https://github.com/morphik-org/morphik-core/tree/main?tab=License-1-ov-file#readme
https://pypi.org/project/morphik/
https://discord.gg/BwMtv3Zaju

Features
� First-class Support for Unstructured Data

Ingest ANY file format (PDFs, videos, text) with intelligent parsing

Advanced retrieval with ColPali multi-modal embeddings

Automatic document chunking and embedding

� Knowledge Graph Integration

Extract entities and relationships automatically

Graph-enhanced retrieval for more relevant results

Explore document connections visually

� Advanced RAG Capabilities

Multi-stage retrieval with vector search and reranking

Fine-tuned similarity thresholds

Detailed metadata filtering

� Natural Language Rules Engine

Define schema-like rules for unstructured data

Extract structured metadata during ingestion

Transform documents with natural language instructions

� Persistent KV-caching

Pre-process and "freeze" document states

Reduce compute costs and response times

Cache selective document subsets

� MCP Support

Model Context Protocol integration

Easy knowledge sharing with AI systems

� Extensible Architecture

Support for custom parsers and embedding models

Multiple storage backends (S3, local)

Vector store integration with PostgreSQL/pgvector

Quick Start
Installation

Clone the repository

git clone https://github.com/morphik-org/morphik-core.git

cd morphik-core

Create a virtual environment

python3.12 -m venv .venv

source .venv/bin/activate # Linux/macOS

Install dependencies

pip install -r requirements.txt

Configure and start the server

python quick_setup.py

python start_server.py

Using the Python SDK

from morphik import Morphik

Connect to Morphik server

db = Morphik("morphik://localhost:8000")

Ingest a document

doc = db.ingest_text("This is a sample document about AI technology.",

 metadata={"category": "tech", "author": "Morphik"})

Ingest a file (PDF, DOCX, video, etc.)

doc = db.ingest_file("path/to/document.pdf",

 metadata={"category": "research"})

Use ColPali for multi-modal documents (PDFs with images, charts, etc.)

doc = db.ingest_file("path/to/report_with_charts.pdf", use_colpali=True)

Apply natural language rules during ingestion

rules = [

 {"type": "metadata_extraction", "schema": {"title": "string", "author": "string"}},

 {"type": "natural_language", "prompt": "Remove all personally identifiable information"}

]

doc = db.ingest_file("path/to/document.pdf", rules=rules)

Retrieve relevant document chunks

chunks = db.retrieve_chunks("What are the latest AI advancements?",

 filters={"category": "tech"},

 k=5)

Generate a completion with context

response = db.query("Explain the benefits of knowledge graphs in AI applications",

 filters={"category": "research"})

print(response.completion)

Create and use a knowledge graph

db.create_graph("tech_graph", filters={"category": "tech"})

response = db.query("How does AI relate to cloud computing?",

 graph_name="tech_graph",

 hop_depth=2)

Batch Operations

Ingest multiple files

docs = db.ingest_files(

 ["doc1.pdf", "doc2.pdf"],

 metadata={"category": "research"},

 parallel=True

)

Ingest all PDFs in a directory

docs = db.ingest_directory(

 "data/documents",

 recursive=True,

 pattern="*.pdf"

)

Batch retrieve documents

docs = db.batch_get_documents(["doc_id1", "doc_id2"])

Multi-modal Retrieval (ColPali)

Ingest a PDF with charts and images

db.ingest_file("report_with_charts.pdf", use_colpali=True)

Retrieve relevant chunks, including images

chunks = db.retrieve_chunks(

 "Show me the Q2 revenue chart",

 use_colpali=True,

 k=3

)

Process retrieved images

for chunk in chunks:

 if hasattr(chunk.content, 'show'): # If it's an image

 chunk.content.show()

 else:

 print(chunk.content)

Why Choose Morphik?
Feature Morphik Traditional

Vector DBs
Document

DBs
LLM

Frameworks
Multi-modal
Support

� Advanced ColPali embedding
for text + images � or Limited � �

Knowledge
Graphs

� Automated extraction &
enhanced retrieval � � �

Feature Morphik Traditional
Vector DBs

Document
DBs

LLM
Frameworks

Rules Engine � Natural language rules &
schema definition � � Limited

Caching � Persistent KV-caching with
selective updates � � Limited

Scalability � Millions of documents with
PostgreSQL � � Limited

Video Content � Native video parsing &
transcription � � �

Deployment
Options � Self-hosted, cloud, or hybrid Varies Varies Limited

Open Source � MIT License Varies Varies Varies

API & SDK � Clean Python SDK & RESTful
API Varies Varies Varies

Key Advantages
ColPali Multi-modal Embeddings: Process and retrieve from documents based on both textual and visual content,

maintaining the visual context that other systems miss.

Cache Augmented Retrieval: Pre-process and "freeze" document states to reduce compute costs by up to 80% and

drastically improve response times.

Schema-like Rules for Unstructured Data: Define rules to extract consistent metadata from unstructured content,

bringing database-like queryability to any document format.

Enterprise-grade Scalability: Built on proven PostgreSQL database technology that can scale to millions of

documents while maintaining sub-second retrieval times.

Documentation
For comprehensive documentation:

Installation Guide (https://docs.morphik.ai/getting-started)

Core Concepts (https://docs.morphik.ai/concepts/naive-rag)

Python SDK (https://docs.morphik.ai/python-sdk/morphik)

API Reference (https://docs.morphik.ai/api-reference/health-check)

License
This project is licensed under the MIT License - see the LICENSE (LICENSE) file for details.

Community
Discord (https://discord.gg/BwMtv3Zaju) - Join our community

GitHub (https://github.com/morphik-org/morphik-core) - Contribute to development

https://docs.morphik.ai/getting-started
https://docs.morphik.ai/concepts/naive-rag
https://docs.morphik.ai/python-sdk/morphik
https://docs.morphik.ai/api-reference/health-check
file:///tmp/MarkdownToPdfHandler/utlsb5ps.di2/LICENSE
https://discord.gg/BwMtv3Zaju
https://github.com/morphik-org/morphik-core

Built with ❤ by Morphik

