morphik-core/shell.py

920 lines
32 KiB
Python
Raw Normal View History

2024-12-31 10:22:25 +05:30
#!/usr/bin/env python3
"""
Morphik interactive CLI.
Assumes a Morphik server is running.
2024-12-31 10:22:25 +05:30
Usage:
Without authentication (connects to localhost):
python shell.py
With authentication:
python shell.py <uri>
Example: python shell.py "morphik://user:token@localhost:8000"
2024-12-31 10:22:25 +05:30
This provides the exact same interface as the Python SDK:
db.ingest_text("content", metadata={...})
db.ingest_file("path/to/file")
db.query("what are the key findings?")
etc...
"""
import sys
from pathlib import Path
2025-01-09 15:47:25 +05:30
import time
from typing import Any, Dict, List, Optional, Union
2025-01-09 15:47:25 +05:30
import requests
2024-12-31 10:22:25 +05:30
# Add local SDK to path before other imports
_SDK_PATH = str(Path(__file__).parent / "sdks" / "python")
if _SDK_PATH not in sys.path:
sys.path.insert(0, _SDK_PATH)
from morphik import Morphik # noqa: E402
from morphik.models import Document # noqa: E402
2024-12-31 10:22:25 +05:30
class DB:
def __init__(self, uri: str = None):
"""Initialize Morphik with optional URI"""
self._client = Morphik(uri, is_local=True, timeout=1000)
self.base_url = "http://localhost:8000" # For health check only
2025-01-09 15:47:25 +05:30
def check_health(self, max_retries=30, retry_interval=1) -> bool:
"""Check if Morphik server is healthy with retries"""
2025-01-09 15:47:25 +05:30
health_url = f"{self.base_url}/health"
for attempt in range(max_retries):
try:
response = requests.get(health_url, timeout=5)
if response.status_code == 200:
return True
except requests.exceptions.RequestException:
pass
if attempt < max_retries - 1:
print(
f"Waiting for Morphik server to be ready... (attempt {attempt + 1}/{max_retries})"
2025-01-09 15:47:25 +05:30
)
time.sleep(retry_interval)
return False
def ingest_text(
self,
content: str,
metadata: Optional[Dict[str, Any]] = None,
rules: Optional[List[Dict[str, Any]]] = None,
use_colpali: bool = True,
as_object: bool = False,
) -> Union[dict, "Document"]:
"""
Ingest text content into Morphik.
Args:
content: Text content to ingest
metadata: Optional metadata dictionary
rules: Optional list of rule objects. Examples:
[{"type": "metadata_extraction", "schema": {"name": "string"}},
{"type": "natural_language", "prompt": "Remove PII"}]
use_colpali: Whether to use ColPali-style embedding model to ingest the text
as_object: If True, returns the Document object with update methods, otherwise returns a dict
Returns:
Document metadata (dict or Document object)
Example:
```python
# Create a document and immediately update it with new content
doc = db.ingest_text("Initial content", as_object=True)
doc.update_with_text("Additional content")
```
"""
doc = self._client.ingest_text(
content, metadata=metadata or {}, rules=rules, use_colpali=use_colpali
)
return doc if as_object else doc.model_dump()
2024-12-31 10:22:25 +05:30
def ingest_file(
self,
file: str,
filename: str = None,
metadata: dict = None,
rules: Optional[List[Dict[str, Any]]] = None,
use_colpali: bool = True,
as_object: bool = False,
) -> Union[dict, "Document"]:
"""
Ingest a file into Morphik.
Args:
file: Path to file to ingest
filename: Optional filename (defaults to basename of file path)
metadata: Optional metadata dictionary
rules: Optional list of rule objects. Examples:
[{"type": "metadata_extraction", "schema": {"title": "string"}},
{"type": "natural_language", "prompt": "Summarize"}]
use_colpali: Whether to use ColPali-style embedding model to ingest the file
as_object: If True, returns the Document object with update methods, otherwise returns a dict
Returns:
Document metadata (dict or Document object)
Example:
```python
# Create a document from a file and immediately update it with text
doc = db.ingest_file("document.pdf", as_object=True)
doc.update_with_text("Additional notes about this document")
```
"""
file_path = Path(file)
filename = filename or file_path.name
2024-12-31 10:22:25 +05:30
doc = self._client.ingest_file(
file=file_path,
filename=filename,
metadata=metadata or {},
rules=rules,
use_colpali=use_colpali,
2024-12-31 10:22:25 +05:30
)
return doc if as_object else doc.model_dump()
2024-12-31 10:22:25 +05:30
2025-03-18 23:27:53 -04:00
def ingest_files(
self,
files: List[str],
metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None,
rules: Optional[List[Dict[str, Any]]] = None,
use_colpali: bool = True,
parallel: bool = True,
as_objects: bool = False,
) -> List[Union[dict, "Document"]]:
2025-03-18 23:27:53 -04:00
"""
Batch ingest multiple files into Morphik.
2025-03-18 23:27:53 -04:00
Args:
files: List of file paths to ingest
metadata: Optional metadata (single dict for all files or list of dicts)
rules: Optional list of rules. Can be either:
- A single list of rules to apply to all files
- A list of rule lists, one per file
use_colpali: Whether to use ColPali-style embedding model
parallel: Whether to process files in parallel
as_objects: If True, returns Document objects with update methods, otherwise returns dicts
Returns:
List of document metadata (dicts or Document objects)
Example:
```python
# Ingest multiple files with shared metadata
docs = db.ingest_files(
["doc1.pdf", "doc2.pdf"],
metadata={"category": "research"},
parallel=True
)
# Ingest files with individual metadata
docs = db.ingest_files(
["doc1.pdf", "doc2.pdf"],
metadata=[
{"category": "research", "author": "Alice"},
{"category": "reports", "author": "Bob"}
]
)
```
"""
# Convert file paths to Path objects
file_paths = [Path(f) for f in files]
2025-03-18 23:27:53 -04:00
# Ingest files using the client
docs = self._client.ingest_files(
files=file_paths,
metadata=metadata,
rules=rules,
use_colpali=use_colpali,
parallel=parallel,
)
2025-03-18 23:27:53 -04:00
return docs if as_objects else [doc.model_dump() for doc in docs]
def ingest_directory(
self,
directory: str,
recursive: bool = False,
pattern: str = "*",
metadata: Optional[Dict[str, Any]] = None,
rules: Optional[List[Dict[str, Any]]] = None,
use_colpali: bool = True,
parallel: bool = True,
as_objects: bool = False,
) -> List[Union[dict, "Document"]]:
2025-03-18 23:27:53 -04:00
"""
Ingest all files in a directory into Morphik.
2025-03-18 23:27:53 -04:00
Args:
directory: Path to directory containing files to ingest
recursive: Whether to recursively process subdirectories
pattern: Optional glob pattern to filter files (e.g. "*.pdf")
metadata: Optional metadata dictionary to apply to all files
rules: Optional list of rules. Can be either:
- A single list of rules to apply to all files
- A list of rule lists, one per file
use_colpali: Whether to use ColPali-style embedding model
parallel: Whether to process files in parallel
as_objects: If True, returns Document objects with update methods, otherwise returns dicts
Returns:
List of document metadata (dicts or Document objects)
Example:
```python
# Ingest all PDFs in a directory and its subdirectories
docs = db.ingest_directory(
"data/documents",
recursive=True,
metadata={"category": "research"},
pattern="*.pdf"
)
```
"""
# Convert directory to Path
dir_path = Path(directory)
2025-03-18 23:27:53 -04:00
# Ingest directory using the client
docs = self._client.ingest_directory(
directory=dir_path,
recursive=recursive,
pattern=pattern,
metadata=metadata,
rules=rules,
use_colpali=use_colpali,
parallel=parallel,
)
2025-03-18 23:27:53 -04:00
return docs if as_objects else [doc.model_dump() for doc in docs]
2024-12-31 10:22:25 +05:30
def retrieve_chunks(
self,
query: str,
filters: dict = None,
k: int = 4,
min_score: float = 0.0,
use_colpali: bool = True,
2024-12-31 10:22:25 +05:30
) -> list:
"""
Search for relevant chunks
Args:
query: Search query text
filters: Optional metadata filters
k: Number of results (default: 4)
min_score: Minimum similarity threshold (default: 0.0)
use_colpali: Whether to use ColPali-style embedding model for retrieval
"""
2024-12-31 10:22:25 +05:30
results = self._client.retrieve_chunks(
query, filters=filters or {}, k=k, min_score=min_score, use_colpali=use_colpali
2024-12-31 10:22:25 +05:30
)
return [r.model_dump() for r in results]
def retrieve_docs(
self,
query: str,
filters: dict = None,
k: int = 4,
min_score: float = 0.0,
use_colpali: bool = True,
2024-12-31 10:22:25 +05:30
) -> list:
"""
Retrieve relevant documents
Args:
query: Search query text
filters: Optional metadata filters
k: Number of results (default: 4)
min_score: Minimum similarity threshold (default: 0.0)
use_colpali: Whether to use ColPali-style embedding model for retrieval
"""
results = self._client.retrieve_docs(
query, filters=filters or {}, k=k, min_score=min_score, use_colpali=use_colpali
)
2024-12-31 10:22:25 +05:30
return [r.model_dump() for r in results]
def query(
self,
query: str,
filters: dict = None,
k: int = 4,
min_score: float = 0.0,
max_tokens: int = None,
temperature: float = None,
use_colpali: bool = True,
graph_name: str = None,
hop_depth: int = 1,
include_paths: bool = False,
prompt_overrides: dict = None,
2024-12-31 10:22:25 +05:30
) -> dict:
"""
Generate completion using relevant chunks as context
Args:
query: Query text
filters: Optional metadata filters
k: Number of chunks to use as context (default: 4)
min_score: Minimum similarity threshold (default: 0.0)
max_tokens: Maximum tokens in completion
temperature: Model temperature
use_colpali: Whether to use ColPali-style embedding model for retrieval
graph_name: Optional name of the graph to use for knowledge graph-enhanced retrieval
hop_depth: Number of relationship hops to traverse in the graph (1-3)
include_paths: Whether to include relationship paths in the response
prompt_overrides: Optional customizations for entity extraction, resolution, and query prompts
Examples:
Standard query:
>>> db.query("What are the key findings?", filters={"category": "research"})
Knowledge graph enhanced query:
>>> db.query("How does product X relate to customer segment Y?",
graph_name="market_graph", hop_depth=2, include_paths=True)
With prompt customization:
>>> db.query("What are the key findings?",
prompt_overrides={
"query": {
"prompt_template": "Answer the question in a formal, academic tone: {question}"
}
})
# If include_paths=True, you can inspect the graph paths
>>> response = db.query("...", graph_name="sales_graph", include_paths=True)
>>> if "graph" in response.get("metadata", {}):
>>> for path in response["metadata"]["graph"]["paths"]:
>>> print(" -> ".join(path))
"""
2024-12-31 10:22:25 +05:30
response = self._client.query(
query,
filters=filters or {},
k=k,
min_score=min_score,
max_tokens=max_tokens,
temperature=temperature,
use_colpali=use_colpali,
graph_name=graph_name,
hop_depth=hop_depth,
include_paths=include_paths,
prompt_overrides=prompt_overrides,
2024-12-31 10:22:25 +05:30
)
return response.model_dump()
def list_documents(
self, skip: int = 0, limit: int = 100, filters: dict = None, as_objects: bool = False
) -> list:
"""
List accessible documents
Args:
skip: Number of documents to skip
limit: Maximum number of documents to return
filters: Optional metadata filters
as_objects: If True, returns Document objects with update methods, otherwise returns dicts
Returns:
List of documents (as dicts or Document objects)
Example:
```python
# Get a list of documents that can be updated
docs = db.list_documents(as_objects=True)
for doc in docs:
doc.update_metadata({"status": "reviewed"})
```
"""
2024-12-31 10:22:25 +05:30
docs = self._client.list_documents(skip=skip, limit=limit, filters=filters or {})
return docs if as_objects else [doc.model_dump() for doc in docs]
2024-12-31 10:22:25 +05:30
def get_document(self, document_id: str, as_object: bool = False) -> Union[dict, "Document"]:
"""
Get document metadata by ID
Args:
document_id: ID of the document
as_object: If True, returns the Document object with update methods, otherwise returns a dict
Returns:
Document metadata (dict or Document object)
"""
2024-12-31 10:22:25 +05:30
doc = self._client.get_document(document_id)
return doc if as_object else doc.model_dump()
def get_document_by_filename(
self, filename: str, as_object: bool = False
) -> Union[dict, "Document"]:
"""
Get document metadata by filename
Args:
filename: Filename of the document
as_object: If True, returns the Document object with update methods, otherwise returns a dict
Returns:
Document metadata (dict or Document object)
Example:
```python
# Get a document by its filename
doc = db.get_document_by_filename("report.pdf")
print(f"Document ID: {doc['external_id']}")
```
"""
doc = self._client.get_document_by_filename(filename)
return doc if as_object else doc.model_dump()
def update_document_with_text(
self,
document_id: str,
content: str,
metadata: Optional[Dict[str, Any]] = None,
rules: Optional[List] = None,
update_strategy: str = "add",
use_colpali: bool = None,
) -> dict:
"""
Update a document with new text content using the specified strategy.
Args:
document_id: ID of the document to update
content: The new content to add
metadata: Additional metadata to update (optional)
rules: Optional list of rules to apply to the content
update_strategy: Strategy for updating the document (currently only 'add' is supported)
use_colpali: Whether to use multi-vector embedding
Returns:
Updated document metadata
"""
doc = self._client.update_document_with_text(
document_id=document_id,
content=content,
metadata=metadata,
rules=rules,
update_strategy=update_strategy,
use_colpali=use_colpali,
)
return doc.model_dump()
def update_document_with_file(
self,
document_id: str,
file: str,
filename: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None,
rules: Optional[List] = None,
update_strategy: str = "add",
use_colpali: bool = None,
) -> dict:
"""
Update a document with content from a file using the specified strategy.
Args:
document_id: ID of the document to update
file: Path to file to add
filename: Name of the file (optional, defaults to basename of file path)
metadata: Additional metadata to update (optional)
rules: Optional list of rules to apply to the content
update_strategy: Strategy for updating the document (currently only 'add' is supported)
use_colpali: Whether to use multi-vector embedding
Returns:
Updated document metadata
"""
file_path = Path(file)
filename = filename or file_path.name
doc = self._client.update_document_with_file(
document_id=document_id,
file=file_path,
filename=filename,
metadata=metadata,
rules=rules,
update_strategy=update_strategy,
use_colpali=use_colpali,
)
2024-12-31 10:22:25 +05:30
return doc.model_dump()
def update_document_metadata(
self,
document_id: str,
metadata: Dict[str, Any],
) -> dict:
"""
Update only the metadata of a document.
Args:
document_id: ID of the document to update
metadata: New metadata to set
Returns:
Document: Updated document metadata
"""
doc = self._client.update_document_metadata(
document_id=document_id,
metadata=metadata,
)
return doc.model_dump()
def update_document_by_filename_with_text(
self,
filename: str,
content: str,
new_filename: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None,
rules: Optional[List] = None,
update_strategy: str = "add",
use_colpali: bool = None,
) -> dict:
"""
Update a document identified by filename with new text content.
Args:
filename: Filename of the document to update
content: The new content to add
new_filename: Optional new filename for the document
metadata: Additional metadata to update (optional)
rules: Optional list of rules to apply to the content
update_strategy: Strategy for updating the document (currently only 'add' is supported)
use_colpali: Whether to use multi-vector embedding
Returns:
Updated document metadata
"""
doc = self._client.update_document_by_filename_with_text(
filename=filename,
content=content,
new_filename=new_filename,
metadata=metadata,
rules=rules,
update_strategy=update_strategy,
use_colpali=use_colpali,
)
return doc.model_dump()
def update_document_by_filename_with_file(
self,
filename: str,
file: str,
new_filename: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None,
rules: Optional[List] = None,
update_strategy: str = "add",
use_colpali: bool = None,
) -> dict:
"""
Update a document identified by filename with content from a file.
Args:
filename: Filename of the document to update
file: Path to file to add
new_filename: Optional new filename for the document
metadata: Additional metadata to update (optional)
rules: Optional list of rules to apply to the content
update_strategy: Strategy for updating the document (currently only 'add' is supported)
use_colpali: Whether to use multi-vector embedding
Returns:
Updated document metadata
"""
file_path = Path(file)
new_filename = new_filename or file_path.name
doc = self._client.update_document_by_filename_with_file(
filename=filename,
file=file_path,
new_filename=new_filename,
metadata=metadata,
rules=rules,
update_strategy=update_strategy,
use_colpali=use_colpali,
)
return doc.model_dump()
def update_document_by_filename_metadata(
self,
filename: str,
metadata: Dict[str, Any],
new_filename: Optional[str] = None,
) -> dict:
"""
Update a document's metadata using filename to identify the document.
Args:
filename: Filename of the document to update
metadata: New metadata to set
new_filename: Optional new filename to assign to the document
Returns:
Document: Updated document metadata
"""
doc = self._client.update_document_by_filename_metadata(
filename=filename,
metadata=metadata,
new_filename=new_filename,
)
return doc.model_dump()
def batch_get_documents(
self, document_ids: List[str], as_objects: bool = False
) -> List[Union[dict, "Document"]]:
"""
Retrieve multiple documents by their IDs in a single batch operation.
Args:
document_ids: List of document IDs to retrieve
as_objects: If True, returns Document objects with update methods, otherwise returns dicts
Returns:
List of document metadata (as dicts or Document objects)
Example:
```python
# Get multiple documents that can be updated
docs = db.batch_get_documents(["doc_123", "doc_456"], as_objects=True)
for doc in docs:
doc.update_metadata({"batch_processed": True})
```
"""
docs = self._client.batch_get_documents(document_ids)
return docs if as_objects else [doc.model_dump() for doc in docs]
def batch_get_chunks(self, sources: List[dict]) -> List[dict]:
"""
Retrieve specific chunks by their document ID and chunk number in a single batch operation.
Args:
sources: List of dictionaries with document_id and chunk_number fields
Returns:
List of chunk results
Example:
sources = [
{"document_id": "doc_123", "chunk_number": 0},
{"document_id": "doc_456", "chunk_number": 2}
]
"""
chunks = self._client.batch_get_chunks(sources)
return [chunk.model_dump() for chunk in chunks]
2024-12-31 10:22:25 +05:30
def create_cache(
self,
name: str,
model: str,
gguf_file: str,
filters: dict = None,
docs: list = None,
) -> dict:
"""Create a new cache with specified configuration"""
response = self._client.create_cache(
name=name,
model=model,
gguf_file=gguf_file,
filters=filters or {},
docs=docs,
)
return response
def get_cache(self, name: str) -> "Cache":
"""Get a cache by name"""
return self._client.get_cache(name)
def create_graph(
self,
name: str,
filters: Dict[str, Any] = None,
documents: List[str] = None,
prompt_overrides: Dict[str, Any] = None,
) -> dict:
"""
Create a graph from documents.
This function processes documents matching filters or specific document IDs,
extracts entities and relationships, and saves them as a graph.
Args:
name: Name of the graph to create
filters: Optional metadata filters to determine which documents to include
documents: Optional list of specific document IDs to include
prompt_overrides: Optional customizations for entity extraction and resolution prompts
Returns:
dict: Information about the created graph
Examples:
Create a graph from documents with category="research":
>>> db.create_graph("research_graph", filters={"category": "research"})
Create a graph from specific documents:
>>> db.create_graph("custom_graph", documents=["doc1", "doc2", "doc3"])
With custom entity extraction examples:
>>> db.create_graph(
>>> "medical_graph",
>>> filters={"category": "medical"},
>>> prompt_overrides={
>>> "entity_extraction": {
>>> "examples": [
>>> {"label": "Insulin", "type": "MEDICATION"},
>>> {"label": "Diabetes", "type": "CONDITION"}
>>> ]
>>> }
>>> }
>>> )
"""
graph = self._client.create_graph(
name=name,
filters=filters,
documents=documents,
prompt_overrides=prompt_overrides,
)
return graph.model_dump()
def get_graph(self, name: str) -> dict:
"""
Get a graph by name.
Args:
name: Name of the graph to retrieve
Returns:
dict: The requested graph object containing entities and relationships
Examples:
Get a graph by name and inspect its contents:
>>> graph = db.get_graph("research_graph")
>>> print(f"Graph has {len(graph['entities'])} entities and {len(graph['relationships'])} relationships")
>>> print(f"Entities: {[entity['label'] for entity in graph['entities'][:5]]}")
"""
graph = self._client.get_graph(name)
return graph.model_dump() if graph else {}
def update_graph(
self,
name: str,
additional_filters: dict = None,
additional_documents: list = None,
prompt_overrides: dict = None,
) -> dict:
"""
Update an existing graph with new documents.
Args:
name: Name of the graph to update
additional_filters: Optional additional metadata filters to determine which new documents to include
additional_documents: Optional list of additional document IDs to include
prompt_overrides: Optional customizations for entity extraction and resolution prompts
Returns:
dict: The updated graph
Examples:
Update a graph with new documents:
>>> updated_graph = db.update_graph(
>>> "research_graph",
>>> additional_filters={"category": "new_research"},
>>> additional_documents=["doc4", "doc5"]
>>> )
>>> print(f"Graph now has {len(updated_graph['entities'])} entities")
With entity resolution examples:
>>> updated_graph = db.update_graph(
>>> "research_graph",
>>> additional_documents=["doc4"],
>>> prompt_overrides={
>>> "entity_resolution": {
>>> "examples": [{
>>> "canonical": "Machine Learning",
>>> "variants": ["ML", "machine learning", "AI/ML"]
>>> }]
>>> }
>>> }
>>> )
"""
graph = self._client.update_graph(
name=name,
additional_filters=additional_filters,
additional_documents=additional_documents,
prompt_overrides=prompt_overrides,
)
return graph.model_dump()
def list_graphs(self) -> list:
"""
List all graphs the user has access to.
Returns:
list: List of graph objects
Examples:
List all accessible graphs:
>>> graphs = db.list_graphs()
>>> for graph in graphs:
>>> print(f"Graph: {graph['name']}, Entities: {len(graph['entities'])}")
"""
graphs = self._client.list_graphs()
return [graph.model_dump() for graph in graphs] if graphs else []
2024-12-31 10:22:25 +05:30
def close(self):
"""Close the client connection"""
self._client.close()
class Cache:
def __init__(self, db: DB, name: str):
self._db = db
self._name = name
self._client_cache = db._client.get_cache(name)
def update(self) -> bool:
"""Update the cache"""
return self._client_cache.update()
def add_docs(self, docs: list) -> bool:
"""Add documents to the cache"""
return self._client_cache.add_docs(docs)
def query(self, query: str, max_tokens: int = None, temperature: float = None) -> dict:
"""Query the cache"""
response = self._client_cache.query(
query=query,
max_tokens=max_tokens,
temperature=temperature,
)
return response.model_dump()
2024-12-31 10:22:25 +05:30
if __name__ == "__main__":
uri = sys.argv[1] if len(sys.argv) > 1 else None
db = DB(uri)
2024-12-31 10:22:25 +05:30
# Check server health
2025-01-09 15:47:25 +05:30
if not db.check_health():
print("Error: Could not connect to Morphik server")
2025-01-09 15:47:25 +05:30
sys.exit(1)
print("\nConnected to Morphik")
2025-01-09 15:47:25 +05:30
2024-12-31 10:22:25 +05:30
# Start an interactive Python shell with 'db' already imported
import code
import readline # Enable arrow key history
import rlcompleter # noqa: F401 # Enable tab completion
readline.parse_and_bind("tab: complete")
# Create the interactive shell
shell = code.InteractiveConsole(locals())
# Print welcome message
print("\nMorphik CLI ready to use. The 'db' object is available with all SDK methods.")
print("Examples:")
print(" db.ingest_text('hello world')")
print(" db.query('what are the key findings?')")
print(" db.batch_get_documents(['doc_id1', 'doc_id2'])")
print(" db.batch_get_chunks([{'document_id': 'doc_123', 'chunk_number': 0}])")
print("\nUpdate by Document ID:")
print(" db.get_document('doc_123')")
print(
" db.update_document_with_text('doc_123', 'This is new content to append', filename='updated_doc.txt')"
)
print(
" db.update_document_with_file('doc_123', 'path/to/file.pdf', metadata={'status': 'updated'})"
)
print(" db.update_document_metadata('doc_123', {'reviewed': True, 'reviewer': 'John'})")
print("\nUpdate by Filename:")
print(" db.get_document_by_filename('report.pdf')")
print(
" db.update_document_by_filename_with_text('report.pdf', 'New content', new_filename='updated_report.pdf')"
)
print(" db.update_document_by_filename_with_file('report.pdf', 'path/to/new_data.pdf')")
print(
" db.update_document_by_filename_metadata('report.pdf', {'reviewed': True}, new_filename='reviewed_report.pdf')"
)
print("\nQuerying:")
print(" result = db.query('how to use this API?'); print(result['sources'])")
print("\nPrompt Overrides:")
print(
" db.query('explain this concept', prompt_overrides={'query': {'prompt_template': 'Answer as a professor: {question}'}})"
)
print(" db.create_graph('medical_graph', filters={'category': 'medical'}, prompt_overrides={")
print(" 'entity_extraction': {'examples': [{'label': 'Insulin', 'type': 'MEDICATION'}]}")
print(" })")
print(" db.update_graph('research_graph', additional_documents=['doc123'], prompt_overrides={")
print(
" 'entity_resolution': {'examples': [{'canonical': 'Machine Learning', 'variants': ['ML', 'machine learning']}]}"
)
print(" })")
print("\nExamples:")
print(" db.ingest_text('hello world')")
print(" db.create_graph('knowledge_graph', filters={'category': 'research'})")
print(" db.query('How does X relate to Y?', graph_name='knowledge_graph', include_paths=True)")
2024-12-31 10:22:25 +05:30
print("Type help(db) for documentation.")
# Start the shell
shell.interact(banner="")