Fix docker pg hardcoded dimensions

This commit is contained in:
Adityavardhan Agrawal 2025-05-03 21:39:58 -07:00
parent df3a40583a
commit 7ef3bd2baa
2 changed files with 2 additions and 97 deletions

View File

@ -1,94 +0,0 @@
-- Enable pgvector extension
CREATE EXTENSION IF NOT EXISTS vector;
-- Create documents table
CREATE TABLE IF NOT EXISTS documents (
external_id VARCHAR PRIMARY KEY,
owner JSONB,
content_type VARCHAR,
filename VARCHAR,
doc_metadata JSONB DEFAULT '{}',
storage_info JSONB DEFAULT '{}',
system_metadata JSONB DEFAULT '{}',
additional_metadata JSONB DEFAULT '{}',
access_control JSONB DEFAULT '{}',
chunk_ids JSONB DEFAULT '[]'
);
-- Create indexes for documents table
CREATE INDEX IF NOT EXISTS idx_owner_id ON documents USING gin(owner);
CREATE INDEX IF NOT EXISTS idx_access_control ON documents USING gin(access_control);
CREATE INDEX IF NOT EXISTS idx_system_metadata ON documents USING gin(system_metadata);
-- Create vector_embeddings table
CREATE TABLE IF NOT EXISTS vector_embeddings (
id SERIAL PRIMARY KEY,
document_id VARCHAR(255),
chunk_number INTEGER,
content TEXT,
chunk_metadata TEXT,
embedding vector(768),
created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP
);
-- Create caches table
CREATE TABLE IF NOT EXISTS caches (
name TEXT PRIMARY KEY,
metadata JSON NOT NULL,
created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP
);
-- Create vector index
CREATE INDEX IF NOT EXISTS vector_idx
ON vector_embeddings USING ivfflat (embedding vector_l2_ops)
WITH (lists = 100);
-- Initialize multi-vector embeddings table for new multi-vector functionality.
CREATE TABLE IF NOT EXISTS multi_vector_embeddings (
id BIGSERIAL PRIMARY KEY,
embeddings BIT(128)[]
);
-- Create function for multi-vector similarity computation
CREATE OR REPLACE FUNCTION max_sim(document bit[], query bit[]) RETURNS double precision AS $$
WITH queries AS (
SELECT row_number() OVER () AS query_number, *
FROM (SELECT unnest(query) AS query) AS foo
),
documents AS (
SELECT unnest(document) AS document
),
similarities AS (
SELECT
query_number,
1.0 - (bit_count(document # query)::float / greatest(bit_length(query), 1)::float) AS similarity
FROM queries CROSS JOIN documents
),
max_similarities AS (
SELECT MAX(similarity) AS max_similarity FROM similarities GROUP BY query_number
)
SELECT SUM(max_similarity) FROM max_similarities;
$$ LANGUAGE SQL;
-- Create graphs table for knowledge graph functionality
CREATE TABLE IF NOT EXISTS graphs (
id VARCHAR PRIMARY KEY,
name VARCHAR NOT NULL,
entities JSONB DEFAULT '[]',
relationships JSONB DEFAULT '[]',
graph_metadata JSONB DEFAULT '{}',
document_ids JSONB DEFAULT '[]',
filters JSONB DEFAULT NULL,
created_at VARCHAR,
updated_at VARCHAR,
owner JSONB DEFAULT '{}',
access_control JSONB DEFAULT '{"readers": [], "writers": [], "admins": []}'
);
-- Create index for graph name and owner for faster lookups
CREATE INDEX IF NOT EXISTS idx_graph_name ON graphs(name);
CREATE INDEX IF NOT EXISTS idx_graph_owner ON graphs USING gin(owner);
-- Create unique constraint on name scoped by owner
CREATE UNIQUE INDEX IF NOT EXISTS idx_graph_owner_name ON graphs((owner->>'id'), name);

View File

@ -18,8 +18,7 @@ RUN git clone --branch v0.5.1 https://github.com/pgvector/pgvector.git \
RUN apk del git build-base clang llvm postgresql-dev \
&& rm -rf /pgvector
# Copy initialization scripts
COPY init.sql /docker-entrypoint-initdb.d/
# Copy data dump
COPY dump.sql /tmp/dump.sql
# (No database init script necessary — schema is created by the application at runtime)