import os from dotenv import load_dotenv from databridge import DataBridge # Load environment variables load_dotenv() # Connect to DataBridge db = DataBridge(os.getenv("DATABRIDGE_URI"), timeout=10000, is_local=True) # Basic text ingestion text_doc = db.ingest_text( "DataBridge is an open-source database designed for AI applications that simplifies working with unstructured data.", metadata={"category": "tech", "author": "DataBridge"} ) print(f"Ingested text document with ID: {text_doc.external_id}") # Basic file ingestion file_doc = db.ingest_file( "examples/assets/colpali_example.pdf", metadata={"category": "research", "topic": "technology"} ) print(f"Ingested file with ID: {file_doc.external_id}") # Basic retrieval chunks = db.retrieve_chunks( query="What is DataBridge?", k=3 ) print("Retrieved chunks:") for chunk in chunks: print(f"Content: {chunk.content[:100]}...") print(f"Score: {chunk.score}\n") # Basic query with RAG response = db.query("What is DataBridge and what is it used for?") print("Query response:") print(response.completion)