2025-04-08 20:06:18 -07:00
2025-04-08 20:06:18 -07:00
2025-03-23 17:50:18 -04:00
2025-03-20 22:54:18 -04:00
2025-04-06 13:33:28 -07:00
2024-11-17 16:51:18 -05:00
2025-04-01 16:34:55 -07:00
2025-02-06 14:58:34 -05:00
2025-03-05 12:40:13 -05:00
2025-03-25 20:10:07 -07:00
2025-01-09 05:17:25 -05:00
2024-11-23 13:56:45 -05:00
2025-03-26 17:08:58 -07:00

Morphik Logo

Morphik Core

Note: Morphik is launching a hosted service soon! Please sign up for the waitlist.

License PyPI - Version Discord

What is Morphik?

Morphik is an open-source database designed for AI applications that simplifies working with unstructured data. It provides advanced RAG (Retrieval Augmented Generation) capabilities with multi-modal support, knowledge graphs, and intuitive APIs.

Built for scale and performance, Morphik can handle millions of documents while maintaining fast retrieval times. Whether you're prototyping a new AI application or deploying production-grade systems, Morphik provides the infrastructure you need.

Features

  • 📄 First-class Support for Unstructured Data

    • Ingest ANY file format (PDFs, videos, text) with intelligent parsing
    • Advanced retrieval with ColPali multi-modal embeddings
    • Automatic document chunking and embedding
  • 🧠 Knowledge Graph Integration

    • Extract entities and relationships automatically
    • Graph-enhanced retrieval for more relevant results
    • Explore document connections visually
  • 🔍 Advanced RAG Capabilities

    • Multi-stage retrieval with vector search and reranking
    • Fine-tuned similarity thresholds
    • Detailed metadata filtering
  • 📏 Natural Language Rules Engine

    • Define schema-like rules for unstructured data
    • Extract structured metadata during ingestion
    • Transform documents with natural language instructions
  • 💾 Persistent KV-caching

    • Pre-process and "freeze" document states
    • Reduce compute costs and response times
    • Cache selective document subsets
  • 🔌 MCP Support

    • Model Context Protocol integration
    • Easy knowledge sharing with AI systems
  • 🧩 Extensible Architecture

    • Support for custom parsers and embedding models
    • Multiple storage backends (S3, local)
    • Vector store integrations (PostgreSQL/pgvector, MongoDB)

Quick Start

Installation

# Clone the repository
git clone https://github.com/morphik-org/morphik-core.git
cd morphik-core

# Create a virtual environment
python3.12 -m venv .venv
source .venv/bin/activate  # Linux/macOS

# Install dependencies
pip install -r requirements.txt

# Configure and start the server
python quick_setup.py
python start_server.py

Using the Python SDK

from databridge import DataBridge

# Connect to DataBridge server
db = DataBridge("databridge://localhost:8000")

# Ingest a document
doc = db.ingest_text("This is a sample document about AI technology.", 
                    metadata={"category": "tech", "author": "Morphik"})

# Ingest a file (PDF, DOCX, video, etc.)
doc = db.ingest_file("path/to/document.pdf", 
                    metadata={"category": "research"})

# Use ColPali for multi-modal documents (PDFs with images, charts, etc.)
doc = db.ingest_file("path/to/report_with_charts.pdf", use_colpali=True)

# Apply natural language rules during ingestion
rules = [
    {"type": "metadata_extraction", "schema": {"title": "string", "author": "string"}},
    {"type": "natural_language", "prompt": "Remove all personally identifiable information"}
]
doc = db.ingest_file("path/to/document.pdf", rules=rules)

# Retrieve relevant document chunks
chunks = db.retrieve_chunks("What are the latest AI advancements?", 
                           filters={"category": "tech"}, 
                           k=5)

# Generate a completion with context
response = db.query("Explain the benefits of knowledge graphs in AI applications",
                   filters={"category": "research"})
print(response.completion)

# Create and use a knowledge graph
db.create_graph("tech_graph", filters={"category": "tech"})
response = db.query("How does AI relate to cloud computing?", 
                   graph_name="tech_graph", 
                   hop_depth=2)

Batch Operations

# Ingest multiple files
docs = db.ingest_files(
    ["doc1.pdf", "doc2.pdf"],
    metadata={"category": "research"},
    parallel=True
)

# Ingest all PDFs in a directory
docs = db.ingest_directory(
    "data/documents",
    recursive=True,
    pattern="*.pdf"
)

# Batch retrieve documents
docs = db.batch_get_documents(["doc_id1", "doc_id2"])

Multi-modal Retrieval (ColPali)

# Ingest a PDF with charts and images
db.ingest_file("report_with_charts.pdf", use_colpali=True)

# Retrieve relevant chunks, including images
chunks = db.retrieve_chunks(
    "Show me the Q2 revenue chart", 
    use_colpali=True, 
    k=3
)

# Process retrieved images
for chunk in chunks:
    if hasattr(chunk.content, 'show'):  # If it's an image
        chunk.content.show()
    else:
        print(chunk.content)

Why Choose Morphik?

Feature Morphik Traditional Vector DBs Document DBs LLM Frameworks
Multi-modal Support Advanced ColPali embedding for text + images or Limited
Knowledge Graphs Automated extraction & enhanced retrieval
Rules Engine Natural language rules & schema definition Limited
Caching Persistent KV-caching with selective updates Limited
Scalability Millions of documents with PostgreSQL/MongoDB Limited
Video Content Native video parsing & transcription
Deployment Options Self-hosted, cloud, or hybrid Varies Varies Limited
Open Source MIT License Varies Varies Varies
API & SDK Clean Python SDK & RESTful API Varies Varies Varies

Key Advantages

  • ColPali Multi-modal Embeddings: Process and retrieve from documents based on both textual and visual content, maintaining the visual context that other systems miss.

  • Cache Augmented Retrieval: Pre-process and "freeze" document states to reduce compute costs by up to 80% and drastically improve response times.

  • Schema-like Rules for Unstructured Data: Define rules to extract consistent metadata from unstructured content, bringing database-like queryability to any document format.

  • Enterprise-grade Scalability: Built on proven database technologies (PostgreSQL/MongoDB) that can scale to millions of documents while maintaining sub-second retrieval times.

Documentation

For comprehensive documentation:

License

This project is licensed under the MIT License - see the LICENSE file for details.

Community

  • Discord - Join our community
  • GitHub - Contribute to development

Built with ❤️ by Morphik

Description
No description provided
Readme MIT 54 MiB
Languages
Python 80.8%
TypeScript 18.9%
Shell 0.2%
CSS 0.1%