mirror of
https://github.com/james-m-jordan/morphik-core.git
synced 2025-05-09 19:32:38 +00:00
342 lines
10 KiB
Python
342 lines
10 KiB
Python
from io import BytesIO
|
|
import json
|
|
from pathlib import Path
|
|
from typing import Dict, Any, List, Optional, Union, BinaryIO
|
|
from urllib.parse import urlparse
|
|
|
|
import jwt
|
|
import requests
|
|
|
|
from .models import (
|
|
Document,
|
|
IngestTextRequest,
|
|
ChunkResult,
|
|
DocumentResult,
|
|
CompletionResponse,
|
|
)
|
|
|
|
|
|
class DataBridge:
|
|
"""
|
|
DataBridge client for document operations.
|
|
|
|
Args:
|
|
uri (str): DataBridge URI in the format "databridge://<owner_id>:<token>@<host>"
|
|
timeout (int, optional): Request timeout in seconds. Defaults to 30.
|
|
is_local (bool, optional): Whether connecting to local development server. Defaults to False.
|
|
|
|
Examples:
|
|
```python
|
|
with DataBridge("databridge://owner_id:token@api.databridge.ai") as db:
|
|
# Ingest text
|
|
doc = db.ingest_text(
|
|
"Sample content",
|
|
metadata={"category": "sample"}
|
|
)
|
|
|
|
# Query documents
|
|
results = db.query("search query")
|
|
```
|
|
"""
|
|
|
|
def __init__(self, uri: str, timeout: int = 30, is_local: bool = False):
|
|
self._timeout = timeout
|
|
self._session = requests.Session()
|
|
if is_local:
|
|
self._session.verify = False # Disable SSL for localhost
|
|
self._is_local = is_local
|
|
self._setup_auth(uri)
|
|
|
|
def _setup_auth(self, uri: str) -> None:
|
|
"""Setup authentication from URI"""
|
|
parsed = urlparse(uri)
|
|
if not parsed.netloc:
|
|
raise ValueError("Invalid URI format")
|
|
|
|
# Split host and auth parts
|
|
auth, host = parsed.netloc.split("@")
|
|
self._owner_id, self._auth_token = auth.split(":")
|
|
|
|
# Set base URL
|
|
self._base_url = f"{'http' if self._is_local else 'https'}://{host}"
|
|
|
|
# Basic token validation
|
|
jwt.decode(self._auth_token, options={"verify_signature": False})
|
|
|
|
def _request(
|
|
self,
|
|
method: str,
|
|
endpoint: str,
|
|
data: Optional[Dict[str, Any]] = None,
|
|
files: Optional[Dict[str, Any]] = None,
|
|
) -> Dict[str, Any]:
|
|
"""Make authenticated HTTP request"""
|
|
headers = {"Authorization": f"Bearer {self._auth_token}"}
|
|
|
|
if not files:
|
|
headers["Content-Type"] = "application/json"
|
|
|
|
response = self._session.request(
|
|
method,
|
|
f"{self._base_url}/{endpoint.lstrip('/')}",
|
|
json=data if not files else None,
|
|
files=files,
|
|
data=data if files else None,
|
|
headers=headers,
|
|
timeout=self._timeout,
|
|
)
|
|
response.raise_for_status()
|
|
return response.json()
|
|
|
|
def ingest_text(self, content: str, metadata: Optional[Dict[str, Any]] = None) -> Document:
|
|
"""
|
|
Ingest a text document into DataBridge.
|
|
|
|
Args:
|
|
content: Text content to ingest
|
|
metadata: Optional metadata dictionary
|
|
|
|
Returns:
|
|
Document: Metadata of the ingested document
|
|
|
|
Example:
|
|
```python
|
|
doc = db.ingest_text(
|
|
"Machine learning is fascinating...",
|
|
metadata={
|
|
"title": "ML Introduction",
|
|
"category": "tech"
|
|
}
|
|
)
|
|
```
|
|
"""
|
|
request = IngestTextRequest(content=content, metadata=metadata or {})
|
|
|
|
response = self._request("POST", "ingest/text", request.model_dump())
|
|
return Document(**response)
|
|
|
|
def ingest_file(
|
|
self,
|
|
file: Union[str, bytes, BinaryIO, Path],
|
|
filename: str,
|
|
content_type: Optional[str] = None,
|
|
metadata: Optional[Dict[str, Any]] = None,
|
|
) -> Document:
|
|
"""
|
|
Ingest a file document into DataBridge.
|
|
|
|
Args:
|
|
file: File to ingest (path string, bytes, file object, or Path)
|
|
filename: Name of the file
|
|
content_type: MIME type (optional, will be guessed if not provided)
|
|
metadata: Optional metadata dictionary
|
|
|
|
Returns:
|
|
Document: Metadata of the ingested document
|
|
|
|
Example:
|
|
```python
|
|
# From file path
|
|
doc = db.ingest_file(
|
|
"document.pdf",
|
|
filename="document.pdf",
|
|
content_type="application/pdf",
|
|
metadata={"department": "research"}
|
|
)
|
|
|
|
# From file object
|
|
with open("document.pdf", "rb") as f:
|
|
doc = db.ingest_file(f, "document.pdf")
|
|
```
|
|
"""
|
|
# Handle different file input types
|
|
if isinstance(file, (str, Path)):
|
|
file_path = Path(file)
|
|
if not file_path.exists():
|
|
raise ValueError(f"File not found: {file}")
|
|
with open(file_path, "rb") as f:
|
|
content = f.read()
|
|
file_obj = BytesIO(content)
|
|
elif isinstance(file, bytes):
|
|
file_obj = BytesIO(file)
|
|
else:
|
|
file_obj = file
|
|
|
|
try:
|
|
# Prepare multipart form data
|
|
files = {"file": (filename, file_obj, content_type or "application/octet-stream")}
|
|
|
|
# Add metadata
|
|
data = {"metadata": json.dumps(metadata or {})}
|
|
|
|
response = self._request("POST", "ingest/file", data=data, files=files)
|
|
return Document(**response)
|
|
finally:
|
|
# Close file if we opened it
|
|
if isinstance(file, (str, Path)):
|
|
file_obj.close()
|
|
|
|
def retrieve_chunks(
|
|
self,
|
|
query: str,
|
|
filters: Optional[Dict[str, Any]] = None,
|
|
k: int = 4,
|
|
min_score: float = 0.0,
|
|
) -> List[ChunkResult]:
|
|
"""
|
|
Retrieve relevant chunks.
|
|
|
|
Args:
|
|
query: Search query text
|
|
filters: Optional metadata filters
|
|
k: Number of results (default: 4)
|
|
min_score: Minimum similarity threshold (default: 0.0)
|
|
|
|
Returns:
|
|
List[ChunkResult]
|
|
|
|
Example:
|
|
```python
|
|
chunks = db.retrieve_chunks(
|
|
"What are the key findings?",
|
|
filters={"department": "research"}
|
|
)
|
|
```
|
|
"""
|
|
request = {"query": query, "filters": filters, "k": k, "min_score": min_score}
|
|
|
|
response = self._request("POST", "search/chunks", request)
|
|
return [ChunkResult(**r) for r in response]
|
|
|
|
def retrieve_docs(
|
|
self,
|
|
query: str,
|
|
filters: Optional[Dict[str, Any]] = None,
|
|
k: int = 4,
|
|
min_score: float = 0.0,
|
|
) -> List[DocumentResult]:
|
|
"""
|
|
Retrieve relevant documents.
|
|
|
|
Args:
|
|
query: Search query text
|
|
filters: Optional metadata filters
|
|
k: Number of results (default: 4)
|
|
min_score: Minimum similarity threshold (default: 0.0)
|
|
|
|
Returns:
|
|
List[DocumentResult]
|
|
|
|
Example:
|
|
```python
|
|
docs = db.retrieve_docs(
|
|
"machine learning",
|
|
k=5
|
|
)
|
|
```
|
|
"""
|
|
request = {"query": query, "filters": filters, "k": k, "min_score": min_score}
|
|
|
|
response = self._request("POST", "retrieve/docs", request)
|
|
return [DocumentResult(**r) for r in response]
|
|
|
|
def query(
|
|
self,
|
|
query: str,
|
|
filters: Optional[Dict[str, Any]] = None,
|
|
k: int = 4,
|
|
min_score: float = 0.0,
|
|
max_tokens: Optional[int] = None,
|
|
temperature: Optional[float] = None,
|
|
) -> CompletionResponse:
|
|
"""
|
|
Generate completion using relevant chunks as context.
|
|
|
|
Args:
|
|
query: Query text
|
|
filters: Optional metadata filters
|
|
k: Number of chunks to use as context (default: 4)
|
|
min_score: Minimum similarity threshold (default: 0.0)
|
|
max_tokens: Maximum tokens in completion
|
|
temperature: Model temperature
|
|
|
|
Returns:
|
|
CompletionResponse
|
|
|
|
Example:
|
|
```python
|
|
response = db.query(
|
|
"What are the key findings about customer satisfaction?",
|
|
filters={"department": "research"},
|
|
temperature=0.7
|
|
)
|
|
print(response.completion)
|
|
```
|
|
"""
|
|
request = {
|
|
"query": query,
|
|
"filters": filters,
|
|
"k": k,
|
|
"min_score": min_score,
|
|
"max_tokens": max_tokens,
|
|
"temperature": temperature,
|
|
}
|
|
|
|
response = self._request("POST", "query", request)
|
|
return CompletionResponse(**response)
|
|
|
|
def list_documents(
|
|
self, skip: int = 0, limit: int = 100, filters: Optional[Dict[str, Any]] = None
|
|
) -> List[Document]:
|
|
"""
|
|
List accessible documents.
|
|
|
|
Args:
|
|
skip: Number of documents to skip
|
|
limit: Maximum number of documents to return
|
|
filters: Optional filters
|
|
|
|
Returns:
|
|
List[Document]: List of accessible documents
|
|
|
|
Example:
|
|
```python
|
|
# Get first page
|
|
docs = db.list_documents(limit=10)
|
|
|
|
# Get next page
|
|
next_page = db.list_documents(skip=10, limit=10, filters={"department": "research"})
|
|
```
|
|
"""
|
|
response = self._request("GET", f"documents?skip={skip}&limit={limit}&filters={filters}")
|
|
return [Document(**doc) for doc in response]
|
|
|
|
def get_document(self, document_id: str) -> Document:
|
|
"""
|
|
Get document metadata by ID.
|
|
|
|
Args:
|
|
document_id: ID of the document
|
|
|
|
Returns:
|
|
Document: Document metadata
|
|
|
|
Example:
|
|
```python
|
|
doc = db.get_document("doc_123")
|
|
print(f"Title: {doc.metadata.get('title')}")
|
|
```
|
|
"""
|
|
response = self._request("GET", f"documents/{document_id}")
|
|
return Document(**response)
|
|
|
|
def close(self):
|
|
"""Close the HTTP session"""
|
|
self._session.close()
|
|
|
|
def __enter__(self):
|
|
return self
|
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
self.close()
|