2024-12-29 12:48:41 +05:30

342 lines
10 KiB
Python

from io import BytesIO
import json
from pathlib import Path
from typing import Dict, Any, List, Optional, Union, BinaryIO
from urllib.parse import urlparse
import jwt
import requests
from .models import (
Document,
IngestTextRequest,
ChunkResult,
DocumentResult,
CompletionResponse,
)
class DataBridge:
"""
DataBridge client for document operations.
Args:
uri (str): DataBridge URI in the format "databridge://<owner_id>:<token>@<host>"
timeout (int, optional): Request timeout in seconds. Defaults to 30.
is_local (bool, optional): Whether connecting to local development server. Defaults to False.
Examples:
```python
with DataBridge("databridge://owner_id:token@api.databridge.ai") as db:
# Ingest text
doc = db.ingest_text(
"Sample content",
metadata={"category": "sample"}
)
# Query documents
results = db.query("search query")
```
"""
def __init__(self, uri: str, timeout: int = 30, is_local: bool = False):
self._timeout = timeout
self._session = requests.Session()
if is_local:
self._session.verify = False # Disable SSL for localhost
self._is_local = is_local
self._setup_auth(uri)
def _setup_auth(self, uri: str) -> None:
"""Setup authentication from URI"""
parsed = urlparse(uri)
if not parsed.netloc:
raise ValueError("Invalid URI format")
# Split host and auth parts
auth, host = parsed.netloc.split("@")
self._owner_id, self._auth_token = auth.split(":")
# Set base URL
self._base_url = f"{'http' if self._is_local else 'https'}://{host}"
# Basic token validation
jwt.decode(self._auth_token, options={"verify_signature": False})
def _request(
self,
method: str,
endpoint: str,
data: Optional[Dict[str, Any]] = None,
files: Optional[Dict[str, Any]] = None,
) -> Dict[str, Any]:
"""Make authenticated HTTP request"""
headers = {"Authorization": f"Bearer {self._auth_token}"}
if not files:
headers["Content-Type"] = "application/json"
response = self._session.request(
method,
f"{self._base_url}/{endpoint.lstrip('/')}",
json=data if not files else None,
files=files,
data=data if files else None,
headers=headers,
timeout=self._timeout,
)
response.raise_for_status()
return response.json()
def ingest_text(self, content: str, metadata: Optional[Dict[str, Any]] = None) -> Document:
"""
Ingest a text document into DataBridge.
Args:
content: Text content to ingest
metadata: Optional metadata dictionary
Returns:
Document: Metadata of the ingested document
Example:
```python
doc = db.ingest_text(
"Machine learning is fascinating...",
metadata={
"title": "ML Introduction",
"category": "tech"
}
)
```
"""
request = IngestTextRequest(content=content, metadata=metadata or {})
response = self._request("POST", "ingest/text", request.model_dump())
return Document(**response)
def ingest_file(
self,
file: Union[str, bytes, BinaryIO, Path],
filename: str,
content_type: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None,
) -> Document:
"""
Ingest a file document into DataBridge.
Args:
file: File to ingest (path string, bytes, file object, or Path)
filename: Name of the file
content_type: MIME type (optional, will be guessed if not provided)
metadata: Optional metadata dictionary
Returns:
Document: Metadata of the ingested document
Example:
```python
# From file path
doc = db.ingest_file(
"document.pdf",
filename="document.pdf",
content_type="application/pdf",
metadata={"department": "research"}
)
# From file object
with open("document.pdf", "rb") as f:
doc = db.ingest_file(f, "document.pdf")
```
"""
# Handle different file input types
if isinstance(file, (str, Path)):
file_path = Path(file)
if not file_path.exists():
raise ValueError(f"File not found: {file}")
with open(file_path, "rb") as f:
content = f.read()
file_obj = BytesIO(content)
elif isinstance(file, bytes):
file_obj = BytesIO(file)
else:
file_obj = file
try:
# Prepare multipart form data
files = {"file": (filename, file_obj, content_type or "application/octet-stream")}
# Add metadata
data = {"metadata": json.dumps(metadata or {})}
response = self._request("POST", "ingest/file", data=data, files=files)
return Document(**response)
finally:
# Close file if we opened it
if isinstance(file, (str, Path)):
file_obj.close()
def retrieve_chunks(
self,
query: str,
filters: Optional[Dict[str, Any]] = None,
k: int = 4,
min_score: float = 0.0,
) -> List[ChunkResult]:
"""
Retrieve relevant chunks.
Args:
query: Search query text
filters: Optional metadata filters
k: Number of results (default: 4)
min_score: Minimum similarity threshold (default: 0.0)
Returns:
List[ChunkResult]
Example:
```python
chunks = db.retrieve_chunks(
"What are the key findings?",
filters={"department": "research"}
)
```
"""
request = {"query": query, "filters": filters, "k": k, "min_score": min_score}
response = self._request("POST", "search/chunks", request)
return [ChunkResult(**r) for r in response]
def retrieve_docs(
self,
query: str,
filters: Optional[Dict[str, Any]] = None,
k: int = 4,
min_score: float = 0.0,
) -> List[DocumentResult]:
"""
Retrieve relevant documents.
Args:
query: Search query text
filters: Optional metadata filters
k: Number of results (default: 4)
min_score: Minimum similarity threshold (default: 0.0)
Returns:
List[DocumentResult]
Example:
```python
docs = db.retrieve_docs(
"machine learning",
k=5
)
```
"""
request = {"query": query, "filters": filters, "k": k, "min_score": min_score}
response = self._request("POST", "retrieve/docs", request)
return [DocumentResult(**r) for r in response]
def query(
self,
query: str,
filters: Optional[Dict[str, Any]] = None,
k: int = 4,
min_score: float = 0.0,
max_tokens: Optional[int] = None,
temperature: Optional[float] = None,
) -> CompletionResponse:
"""
Generate completion using relevant chunks as context.
Args:
query: Query text
filters: Optional metadata filters
k: Number of chunks to use as context (default: 4)
min_score: Minimum similarity threshold (default: 0.0)
max_tokens: Maximum tokens in completion
temperature: Model temperature
Returns:
CompletionResponse
Example:
```python
response = db.query(
"What are the key findings about customer satisfaction?",
filters={"department": "research"},
temperature=0.7
)
print(response.completion)
```
"""
request = {
"query": query,
"filters": filters,
"k": k,
"min_score": min_score,
"max_tokens": max_tokens,
"temperature": temperature,
}
response = self._request("POST", "query", request)
return CompletionResponse(**response)
def list_documents(
self, skip: int = 0, limit: int = 100, filters: Optional[Dict[str, Any]] = None
) -> List[Document]:
"""
List accessible documents.
Args:
skip: Number of documents to skip
limit: Maximum number of documents to return
filters: Optional filters
Returns:
List[Document]: List of accessible documents
Example:
```python
# Get first page
docs = db.list_documents(limit=10)
# Get next page
next_page = db.list_documents(skip=10, limit=10, filters={"department": "research"})
```
"""
response = self._request("GET", f"documents?skip={skip}&limit={limit}&filters={filters}")
return [Document(**doc) for doc in response]
def get_document(self, document_id: str) -> Document:
"""
Get document metadata by ID.
Args:
document_id: ID of the document
Returns:
Document: Document metadata
Example:
```python
doc = db.get_document("doc_123")
print(f"Title: {doc.metadata.get('title')}")
```
"""
response = self._request("GET", f"documents/{document_id}")
return Document(**response)
def close(self):
"""Close the HTTP session"""
self._session.close()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.close()