morphik-core/shell.py
2024-12-31 06:25:51 -05:00

129 lines
4.1 KiB
Python

#!/usr/bin/env python3
"""
DataBridge interactive CLI.
Assumes a DataBridge server is running.
Usage:
python shell.py <uri>
Example: python shell.py "http://test_user:token@localhost:8000"
This provides the exact same interface as the Python SDK:
db.ingest_text("content", metadata={...})
db.ingest_file("path/to/file")
db.query("what are the key findings?")
etc...
"""
import sys
from pathlib import Path
# Add local SDK to path before other imports
_SDK_PATH = str(Path(__file__).parent / "sdks" / "python")
if _SDK_PATH not in sys.path:
sys.path.insert(0, _SDK_PATH)
from databridge import DataBridge # noqa: E402
class DB:
def __init__(self, uri: str):
"""Initialize DataBridge with URI"""
# Convert databridge:// to http:// for localhost
if "localhost" in uri or "127.0.0.1" in uri:
uri = uri.replace("databridge://", "http://")
self.uri = uri
self._client = DataBridge(self.uri, is_local="localhost" in uri or "127.0.0.1" in uri)
def ingest_text(self, content: str, metadata: dict = None) -> dict:
"""Ingest text content into DataBridge"""
doc = self._client.ingest_text(content, metadata=metadata or {})
return doc.model_dump()
def ingest_file(
self, file: str, filename: str, metadata: dict = None, content_type: str = None
) -> dict:
"""Ingest a file into DataBridge"""
file_path = Path(file)
doc = self._client.ingest_file(
file=file_path, filename=filename, content_type=content_type, metadata=metadata or {}
)
return doc.model_dump()
def retrieve_chunks(
self, query: str, filters: dict = None, k: int = 4, min_score: float = 0.0
) -> list:
"""Search for relevant chunks"""
results = self._client.retrieve_chunks(
query, filters=filters or {}, k=k, min_score=min_score
)
return [r.model_dump() for r in results]
def retrieve_docs(
self, query: str, filters: dict = None, k: int = 4, min_score: float = 0.0
) -> list:
"""Retrieve relevant documents"""
results = self._client.retrieve_docs(query, filters=filters or {}, k=k, min_score=min_score)
return [r.model_dump() for r in results]
def query(
self,
query: str,
filters: dict = None,
k: int = 4,
min_score: float = 0.0,
max_tokens: int = None,
temperature: float = None,
) -> dict:
"""Generate completion using relevant chunks as context"""
response = self._client.query(
query,
filters=filters or {},
k=k,
min_score=min_score,
max_tokens=max_tokens,
temperature=temperature,
)
return response.model_dump()
def list_documents(self, skip: int = 0, limit: int = 100, filters: dict = None) -> list:
"""List accessible documents"""
docs = self._client.list_documents(skip=skip, limit=limit, filters=filters or {})
return [doc.model_dump() for doc in docs]
def get_document(self, document_id: str) -> dict:
"""Get document metadata by ID"""
doc = self._client.get_document(document_id)
return doc.model_dump()
def close(self):
"""Close the client connection"""
self._client.close()
if __name__ == "__main__":
if len(sys.argv) != 2:
print("Error: URI argument required")
print(__doc__)
sys.exit(1)
# Create DB instance with provided URI
db = DB(sys.argv[1])
# Start an interactive Python shell with 'db' already imported
import code
import readline # Enable arrow key history
import rlcompleter # noqa: F401 # Enable tab completion
readline.parse_and_bind("tab: complete")
# Create the interactive shell
shell = code.InteractiveConsole(locals())
# Print welcome message
print("\nDataBridge CLI ready to use. The 'db' object is available with all SDK methods.")
print("Example: db.ingest_text('hello world')")
print("Type help(db) for documentation.")
# Start the shell
shell.interact(banner="")