mirror of
https://github.com/james-m-jordan/morphik-core.git
synced 2025-05-09 19:32:38 +00:00
325 lines
12 KiB
Python
325 lines
12 KiB
Python
import botocore
|
|
from dotenv import load_dotenv, find_dotenv
|
|
import os
|
|
import boto3
|
|
import logging
|
|
import tomli # for reading toml files
|
|
from pathlib import Path
|
|
from pymongo import MongoClient
|
|
from pymongo.errors import ConnectionFailure, OperationFailure
|
|
from pymongo.operations import SearchIndexModel
|
|
import argparse
|
|
import platform
|
|
import subprocess
|
|
|
|
# Force reload of environment variables
|
|
load_dotenv(find_dotenv(), override=True)
|
|
|
|
# Set up argument parser
|
|
parser = argparse.ArgumentParser(description="Setup S3 bucket and MongoDB collections")
|
|
parser.add_argument("--debug", action="store_true", help="Enable debug logging")
|
|
parser.add_argument("--quiet", action="store_true", help="Only show warning and error logs")
|
|
args = parser.parse_args()
|
|
|
|
# Configure logging based on command line arguments
|
|
LOGGER = logging.getLogger(__name__)
|
|
match (args.debug, args.quiet):
|
|
case (True, _):
|
|
LOGGER.setLevel(logging.DEBUG)
|
|
case (_, True):
|
|
LOGGER.setLevel(logging.WARNING)
|
|
case _:
|
|
LOGGER.setLevel(logging.INFO)
|
|
|
|
# Add console handler with formatting
|
|
console_handler = logging.StreamHandler()
|
|
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
|
|
console_handler.setFormatter(formatter)
|
|
LOGGER.addHandler(console_handler)
|
|
|
|
# Load configuration from databridge.toml
|
|
config_path = Path("databridge.toml")
|
|
with open(config_path, "rb") as f:
|
|
CONFIG = tomli.load(f)
|
|
LOGGER.info("Loaded configuration from databridge.toml")
|
|
|
|
# Extract configuration values
|
|
STORAGE_PROVIDER = CONFIG["storage"]["provider"]
|
|
DATABASE_PROVIDER = CONFIG["database"]["provider"]
|
|
|
|
# MongoDB specific config
|
|
if "mongodb" in CONFIG["database"]:
|
|
DATABASE_NAME = CONFIG["database"]["mongodb"]["database_name"]
|
|
DOCUMENTS_COLLECTION = "documents"
|
|
CHUNKS_COLLECTION = "document_chunks"
|
|
if "mongodb" in CONFIG["vector_store"]:
|
|
VECTOR_DIMENSIONS = CONFIG["embedding"]["dimensions"]
|
|
VECTOR_INDEX_NAME = "vector_index"
|
|
SIMILARITY_METRIC = CONFIG["embedding"]["similarity_metric"]
|
|
|
|
# Extract storage-specific configuration
|
|
if STORAGE_PROVIDER == "aws-s3":
|
|
DEFAULT_REGION = CONFIG["storage"]["region"]
|
|
DEFAULT_BUCKET_NAME = CONFIG["storage"]["bucket_name"]
|
|
else:
|
|
DEFAULT_REGION = None
|
|
DEFAULT_BUCKET_NAME = None
|
|
|
|
|
|
def create_s3_bucket(bucket_name, region=DEFAULT_REGION):
|
|
"""Set up S3 bucket."""
|
|
# Clear any existing AWS credentials from environment
|
|
boto3.Session().resource("s3").meta.client.close()
|
|
|
|
aws_access_key = os.getenv("AWS_ACCESS_KEY")
|
|
aws_secret_key = os.getenv("AWS_SECRET_ACCESS_KEY")
|
|
region = os.getenv("AWS_REGION") if os.getenv("AWS_REGION") else region
|
|
|
|
if not aws_access_key or not aws_secret_key:
|
|
LOGGER.error("AWS credentials not found in environment variables.")
|
|
return
|
|
|
|
LOGGER.debug("Successfully retrieved AWS credentials and region.")
|
|
# Create new session with explicit credentials
|
|
session = boto3.Session(
|
|
aws_access_key_id=aws_access_key,
|
|
aws_secret_access_key=aws_secret_key,
|
|
region_name=region,
|
|
)
|
|
|
|
s3_client = session.client("s3")
|
|
LOGGER.debug("Successfully created S3 client.")
|
|
|
|
if bucket_exists(s3_client, bucket_name):
|
|
LOGGER.info(f"Bucket with name {bucket_name} already exists")
|
|
return
|
|
|
|
if region == "us-east-1":
|
|
s3_client.create_bucket(Bucket=bucket_name)
|
|
else:
|
|
s3_client.create_bucket(
|
|
Bucket=bucket_name, CreateBucketConfiguration={"LocationConstraint": region}
|
|
)
|
|
|
|
LOGGER.debug(f"Bucket {bucket_name} created successfully in {region} region.")
|
|
|
|
|
|
def bucket_exists(s3_client, bucket_name):
|
|
"""Check if an S3 bucket exists."""
|
|
try:
|
|
s3_client.head_bucket(Bucket=bucket_name)
|
|
return True
|
|
except botocore.exceptions.ClientError as e:
|
|
error_code = int(e.response["Error"]["Code"])
|
|
if error_code == 404:
|
|
return False
|
|
raise
|
|
|
|
|
|
def setup_mongodb():
|
|
"""
|
|
Set up MongoDB database, documents collection, and vector index on documents_chunk collection.
|
|
"""
|
|
# Load MongoDB URI from .env file
|
|
mongo_uri = os.getenv("MONGODB_URI")
|
|
if not mongo_uri:
|
|
raise ValueError("MONGODB_URI not found in .env file.")
|
|
|
|
try:
|
|
# Connect to MongoDB
|
|
client = MongoClient(mongo_uri)
|
|
client.admin.command("ping") # Check connection
|
|
LOGGER.info("Connected to MongoDB successfully.")
|
|
|
|
# Create or access the database
|
|
db = client[DATABASE_NAME]
|
|
LOGGER.info(f"Database '{DATABASE_NAME}' ready.")
|
|
|
|
# Create 'documents' collection
|
|
if DOCUMENTS_COLLECTION not in db.list_collection_names():
|
|
db.create_collection(DOCUMENTS_COLLECTION)
|
|
LOGGER.info(f"Collection '{DOCUMENTS_COLLECTION}' created.")
|
|
else:
|
|
LOGGER.info(f"Collection '{DOCUMENTS_COLLECTION}' already exists.")
|
|
|
|
# Create 'documents_chunk' collection with vector index
|
|
if CHUNKS_COLLECTION not in db.list_collection_names():
|
|
db.create_collection(CHUNKS_COLLECTION)
|
|
LOGGER.info(f"Collection '{CHUNKS_COLLECTION}' created.")
|
|
else:
|
|
LOGGER.info(f"Collection '{CHUNKS_COLLECTION}' already exists.")
|
|
|
|
vector_index_definition = {
|
|
"fields": [
|
|
{
|
|
"numDimensions": VECTOR_DIMENSIONS,
|
|
"path": "embedding",
|
|
"similarity": SIMILARITY_METRIC,
|
|
"type": "vector",
|
|
},
|
|
{"path": "document_id", "type": "filter"},
|
|
]
|
|
}
|
|
vector_index = SearchIndexModel(
|
|
name=VECTOR_INDEX_NAME,
|
|
definition=vector_index_definition,
|
|
type="vectorSearch",
|
|
)
|
|
db[CHUNKS_COLLECTION].create_search_index(model=vector_index)
|
|
LOGGER.info("Vector index 'vector_index' created on 'documents_chunk' collection.")
|
|
|
|
except ConnectionFailure:
|
|
LOGGER.error("Failed to connect to MongoDB. Check your MongoDB URI and network connection.")
|
|
except OperationFailure as e:
|
|
LOGGER.error(f"MongoDB operation failed: {e}")
|
|
except Exception as e:
|
|
LOGGER.error(f"Unexpected error: {e}")
|
|
finally:
|
|
client.close()
|
|
LOGGER.info("MongoDB connection closed.")
|
|
|
|
|
|
def setup_postgres():
|
|
"""
|
|
Set up PostgreSQL database and tables with proper indexes.
|
|
"""
|
|
import asyncio
|
|
from sqlalchemy.ext.asyncio import create_async_engine
|
|
from sqlalchemy import text
|
|
|
|
# Load PostgreSQL URI from .env file
|
|
postgres_uri = os.getenv("POSTGRES_URI")
|
|
if not postgres_uri:
|
|
raise ValueError("POSTGRES_URI not found in .env file.")
|
|
|
|
# Check if pgvector is installed when on macOS
|
|
if platform.system() == "Darwin":
|
|
try:
|
|
# Check if postgresql is installed via homebrew
|
|
result = subprocess.run(
|
|
["brew", "list", "postgresql@14"], capture_output=True, text=True
|
|
)
|
|
if result.returncode != 0:
|
|
LOGGER.error(
|
|
"PostgreSQL not found. Please install it with: brew install postgresql@14"
|
|
)
|
|
raise RuntimeError("PostgreSQL not installed")
|
|
|
|
# Check if pgvector is installed
|
|
result = subprocess.run(["brew", "list", "pgvector"], capture_output=True, text=True)
|
|
if result.returncode != 0:
|
|
LOGGER.error(
|
|
"\nError: pgvector extension not found. Please install it with:\n"
|
|
"brew install pgvector\n"
|
|
"brew services stop postgresql@14\n"
|
|
"brew services start postgresql@14\n"
|
|
)
|
|
raise RuntimeError("pgvector not installed")
|
|
except FileNotFoundError:
|
|
LOGGER.error("Homebrew not found. Please install it from https://brew.sh")
|
|
raise
|
|
|
|
async def _setup_postgres():
|
|
try:
|
|
# Create async engine
|
|
engine = create_async_engine(postgres_uri)
|
|
|
|
async with engine.begin() as conn:
|
|
try:
|
|
# Enable pgvector extension
|
|
await conn.execute(text("CREATE EXTENSION IF NOT EXISTS vector"))
|
|
LOGGER.info("Enabled pgvector extension")
|
|
except Exception as e:
|
|
if "could not open extension control file" in str(e):
|
|
LOGGER.error(
|
|
"\nError: pgvector extension not found. Please install it:\n"
|
|
"- On macOS: brew install pgvector\n"
|
|
"- On Ubuntu: sudo apt install postgresql-14-pgvector\n"
|
|
"- On other systems: check https://github.com/pgvector/pgvector#installation\n"
|
|
)
|
|
raise
|
|
|
|
# Import and create all tables
|
|
from core.database.postgres_database import Base
|
|
from core.vector_store.pgvector_store import Base as VectorBase
|
|
|
|
# Create regular tables first
|
|
await conn.run_sync(Base.metadata.create_all)
|
|
LOGGER.info("Created base PostgreSQL tables")
|
|
|
|
# Get vector dimensions from config
|
|
dimensions = CONFIG["embedding"]["dimensions"]
|
|
|
|
# Drop existing vector index if it exists
|
|
drop_index_sql = """
|
|
DROP INDEX IF EXISTS vector_idx;
|
|
"""
|
|
await conn.execute(text(drop_index_sql))
|
|
|
|
# Drop existing vector embeddings table if it exists
|
|
drop_table_sql = """
|
|
DROP TABLE IF EXISTS vector_embeddings;
|
|
"""
|
|
await conn.execute(text(drop_table_sql))
|
|
|
|
# Create vector embeddings table with proper vector column
|
|
create_table_sql = f"""
|
|
CREATE TABLE vector_embeddings (
|
|
id SERIAL PRIMARY KEY,
|
|
document_id VARCHAR(255),
|
|
chunk_number INTEGER,
|
|
content TEXT,
|
|
chunk_metadata TEXT,
|
|
embedding vector({dimensions}),
|
|
created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP
|
|
);
|
|
"""
|
|
await conn.execute(text(create_table_sql))
|
|
LOGGER.info("Created vector_embeddings table with vector column")
|
|
|
|
# Create the vector index
|
|
index_sql = f"""
|
|
CREATE INDEX vector_idx
|
|
ON vector_embeddings USING ivfflat (embedding vector_l2_ops)
|
|
WITH (lists = 100);
|
|
"""
|
|
await conn.execute(text(index_sql))
|
|
LOGGER.info("Created IVFFlat index on vector_embeddings")
|
|
|
|
await engine.dispose()
|
|
LOGGER.info("PostgreSQL setup completed successfully")
|
|
|
|
except Exception as e:
|
|
LOGGER.error(f"Failed to setup PostgreSQL: {e}")
|
|
raise
|
|
|
|
asyncio.run(_setup_postgres())
|
|
|
|
|
|
def setup():
|
|
# Setup S3 if configured
|
|
if STORAGE_PROVIDER == "aws-s3":
|
|
LOGGER.info("Setting up S3 bucket...")
|
|
create_s3_bucket(DEFAULT_BUCKET_NAME, DEFAULT_REGION)
|
|
LOGGER.info("S3 bucket setup completed.")
|
|
|
|
# Setup database based on provider
|
|
match DATABASE_PROVIDER:
|
|
case "mongodb":
|
|
LOGGER.info("Setting up MongoDB...")
|
|
setup_mongodb()
|
|
LOGGER.info("MongoDB setup completed.")
|
|
case "postgres":
|
|
LOGGER.info("Setting up PostgreSQL...")
|
|
setup_postgres()
|
|
LOGGER.info("PostgreSQL setup completed.")
|
|
case _:
|
|
LOGGER.error(f"Unsupported database provider: {DATABASE_PROVIDER}")
|
|
raise ValueError(f"Unsupported database provider: {DATABASE_PROVIDER}")
|
|
|
|
LOGGER.info("Setup completed successfully. Feel free to start the server now!")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
setup()
|