2025-03-29 18:42:52 -07:00

1292 lines
45 KiB
Python

from io import BytesIO, IOBase
import json
import logging
from pathlib import Path
from typing import Dict, Any, List, Optional, Union, BinaryIO
from urllib.parse import urlparse
import httpx
import jwt
from PIL.Image import Image as PILImage
from pydantic import BaseModel, Field
from .models import (
Document,
ChunkResult,
DocumentResult,
CompletionResponse,
IngestTextRequest,
ChunkSource,
Graph
)
from .rules import Rule
logger = logging.getLogger(__name__)
# Type alias for rules
RuleOrDict = Union[Rule, Dict[str, Any]]
class AsyncCache:
def __init__(self, db: "AsyncDataBridge", name: str):
self._db = db
self._name = name
async def update(self) -> bool:
response = await self._db._request("POST", f"cache/{self._name}/update")
return response.get("success", False)
async def add_docs(self, docs: List[str]) -> bool:
response = await self._db._request("POST", f"cache/{self._name}/add_docs", {"docs": docs})
return response.get("success", False)
async def query(
self, query: str, max_tokens: Optional[int] = None, temperature: Optional[float] = None
) -> CompletionResponse:
response = await self._db._request(
"POST",
f"cache/{self._name}/query",
params={"query": query, "max_tokens": max_tokens, "temperature": temperature},
data="",
)
return CompletionResponse(**response)
class FinalChunkResult(BaseModel):
content: str | PILImage = Field(..., description="Chunk content")
score: float = Field(..., description="Relevance score")
document_id: str = Field(..., description="Parent document ID")
chunk_number: int = Field(..., description="Chunk sequence number")
metadata: Dict[str, Any] = Field(default_factory=dict, description="Document metadata")
content_type: str = Field(..., description="Content type")
filename: Optional[str] = Field(None, description="Original filename")
download_url: Optional[str] = Field(None, description="URL to download full document")
class Config:
arbitrary_types_allowed = True
class AsyncDataBridge:
"""
DataBridge client for document operations.
Args:
uri (str, optional): DataBridge URI in format "databridge://<owner_id>:<token>@<host>".
If not provided, connects to http://localhost:8000 without authentication.
timeout (int, optional): Request timeout in seconds. Defaults to 30.
is_local (bool, optional): Whether to connect to a local server. Defaults to False.
Examples:
```python
# Without authentication
async with AsyncDataBridge() as db:
doc = await db.ingest_text("Sample content")
# With authentication
async with AsyncDataBridge("databridge://owner_id:token@api.databridge.ai") as db:
doc = await db.ingest_text("Sample content")
```
"""
def __init__(self, uri: Optional[str] = None, timeout: int = 30, is_local: bool = False):
self._timeout = timeout
self._client = (
httpx.AsyncClient(timeout=timeout)
if not is_local
else httpx.AsyncClient(
timeout=timeout,
verify=False, # Disable SSL for localhost
http2=False, # Force HTTP/1.1
)
)
self._is_local = is_local
if uri:
self._setup_auth(uri)
else:
self._base_url = "http://localhost:8000"
self._auth_token = None
def _setup_auth(self, uri: str) -> None:
"""Setup authentication from URI"""
parsed = urlparse(uri)
if not parsed.netloc:
raise ValueError("Invalid URI format")
# Split host and auth parts
auth, host = parsed.netloc.split("@")
_, self._auth_token = auth.split(":")
# Set base URL
self._base_url = f"{'http' if self._is_local else 'https'}://{host}"
# Basic token validation
jwt.decode(self._auth_token, options={"verify_signature": False})
async def _request(
self,
method: str,
endpoint: str,
data: Optional[Dict[str, Any]] = None,
files: Optional[Dict[str, Any]] = None,
params: Optional[Dict[str, Any]] = None,
) -> Dict[str, Any]:
"""Make HTTP request"""
headers = {}
if self._auth_token: # Only add auth header if we have a token
headers["Authorization"] = f"Bearer {self._auth_token}"
# Configure request data based on type
if files:
# Multipart form data for files
request_data = {"files": files, "data": data}
# Don't set Content-Type, let httpx handle it
else:
# JSON for everything else
headers["Content-Type"] = "application/json"
request_data = {"json": data}
response = await self._client.request(
method,
f"{self._base_url}/{endpoint.lstrip('/')}",
headers=headers,
params=params,
**request_data,
)
response.raise_for_status()
return response.json()
def _convert_rule(self, rule: RuleOrDict) -> Dict[str, Any]:
"""Convert a rule to a dictionary format"""
if hasattr(rule, "to_dict"):
return rule.to_dict()
return rule
async def ingest_text(
self,
content: str,
filename: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None,
rules: Optional[List[RuleOrDict]] = None,
use_colpali: bool = True,
) -> Document:
"""
Ingest a text document into DataBridge.
Args:
content: Text content to ingest
metadata: Optional metadata dictionary
rules: Optional list of rules to apply during ingestion. Can be:
- MetadataExtractionRule: Extract metadata using a schema
- NaturalLanguageRule: Transform content using natural language
use_colpali: Whether to use ColPali-style embedding model to ingest the text (slower, but significantly better retrieval accuracy for text and images)
Returns:
Document: Metadata of the ingested document
Example:
```python
from databridge.rules import MetadataExtractionRule, NaturalLanguageRule
from pydantic import BaseModel
class DocumentInfo(BaseModel):
title: str
author: str
date: str
doc = await db.ingest_text(
"Machine learning is fascinating...",
metadata={"category": "tech"},
rules=[
# Extract metadata using schema
MetadataExtractionRule(schema=DocumentInfo),
# Transform content
NaturalLanguageRule(prompt="Shorten the content, use keywords")
]
)
```
"""
request = IngestTextRequest(
content=content,
filename=filename,
metadata=metadata or {},
rules=[self._convert_rule(r) for r in (rules or [])],
use_colpali=use_colpali,
)
response = await self._request("POST", "ingest/text", data=request.model_dump())
doc = Document(**response)
doc._client = self
return doc
async def ingest_file(
self,
file: Union[str, bytes, BinaryIO, Path],
filename: str,
metadata: Optional[Dict[str, Any]] = None,
rules: Optional[List[RuleOrDict]] = None,
use_colpali: bool = True,
) -> Document:
"""Ingest a file document into DataBridge."""
# Handle different file input types
if isinstance(file, (str, Path)):
file_path = Path(file)
if not file_path.exists():
raise ValueError(f"File not found: {file}")
with open(file_path, "rb") as f:
content = f.read()
file_obj = BytesIO(content)
elif isinstance(file, bytes):
file_obj = BytesIO(file)
else:
file_obj = file
try:
# Prepare multipart form data
files = {"file": (filename, file_obj)}
# Add metadata and rules
data = {
"metadata": json.dumps(metadata or {}),
"rules": json.dumps([self._convert_rule(r) for r in (rules or [])]),
"use_colpali": json.dumps(use_colpali),
}
response = await self._request("POST", "ingest/file", data=data, files=files)
doc = Document(**response)
doc._client = self
return doc
finally:
# Close file if we opened it
if isinstance(file, (str, Path)):
file_obj.close()
async def ingest_files(
self,
files: List[Union[str, bytes, BinaryIO, Path]],
metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None,
rules: Optional[List[RuleOrDict]] = None,
use_colpali: bool = True,
parallel: bool = True,
) -> List[Document]:
"""
Ingest multiple files into DataBridge.
Args:
files: List of files to ingest (path strings, bytes, file objects, or Paths)
metadata: Optional metadata (single dict for all files or list of dicts)
rules: Optional list of rules to apply
use_colpali: Whether to use ColPali-style embedding
parallel: Whether to process files in parallel
Returns:
List[Document]: List of successfully ingested documents
Raises:
ValueError: If metadata list length doesn't match files length
"""
# Convert files to format expected by API
file_objects = []
for file in files:
if isinstance(file, (str, Path)):
path = Path(file)
file_objects.append(("files", (path.name, open(path, "rb"))))
elif isinstance(file, bytes):
file_objects.append(("files", ("file.bin", file)))
else:
file_objects.append(("files", (getattr(file, "name", "file.bin"), file)))
try:
# Prepare request data
# Convert rules appropriately based on whether it's a flat list or list of lists
if rules:
if all(isinstance(r, list) for r in rules):
# List of lists - per-file rules
converted_rules = [[self._convert_rule(r) for r in rule_list] for rule_list in rules]
else:
# Flat list - shared rules for all files
converted_rules = [self._convert_rule(r) for r in rules]
else:
converted_rules = []
data = {
"metadata": json.dumps(metadata or {}),
"rules": json.dumps(converted_rules),
"use_colpali": str(use_colpali).lower() if use_colpali is not None else None,
"parallel": str(parallel).lower(),
}
response = await self._request("POST", "ingest/files", data=data, files=file_objects)
if response.get("errors"):
# Log errors but don't raise exception
for error in response["errors"]:
logger.error(f"Failed to ingest {error['filename']}: {error['error']}")
docs = [Document(**doc) for doc in response["documents"]]
for doc in docs:
doc._client = self
return docs
finally:
# Clean up file objects
for _, (_, file_obj) in file_objects:
if isinstance(file_obj, (IOBase, BytesIO)) and not file_obj.closed:
file_obj.close()
async def ingest_directory(
self,
directory: Union[str, Path],
recursive: bool = False,
pattern: str = "*",
metadata: Optional[Dict[str, Any]] = None,
rules: Optional[List[RuleOrDict]] = None,
use_colpali: bool = True,
parallel: bool = True,
) -> List[Document]:
"""
Ingest all files in a directory into DataBridge.
Args:
directory: Path to directory containing files to ingest
recursive: Whether to recursively process subdirectories
pattern: Optional glob pattern to filter files (e.g. "*.pdf")
metadata: Optional metadata dictionary to apply to all files
rules: Optional list of rules to apply
use_colpali: Whether to use ColPali-style embedding
parallel: Whether to process files in parallel
Returns:
List[Document]: List of ingested documents
Raises:
ValueError: If directory not found
"""
directory = Path(directory)
if not directory.is_dir():
raise ValueError(f"Directory not found: {directory}")
# Collect all files matching pattern
if recursive:
files = list(directory.rglob(pattern))
else:
files = list(directory.glob(pattern))
# Filter out directories
files = [f for f in files if f.is_file()]
if not files:
return []
# Use ingest_files with collected paths
return await self.ingest_files(
files=files,
metadata=metadata,
rules=rules,
use_colpali=use_colpali,
parallel=parallel
)
async def retrieve_chunks(
self,
query: str,
filters: Optional[Dict[str, Any]] = None,
k: int = 4,
min_score: float = 0.0,
use_colpali: bool = True,
) -> List[FinalChunkResult]:
"""
Search for relevant chunks.
Args:
query: Search query text
filters: Optional metadata filters
k: Number of results (default: 4)
min_score: Minimum similarity threshold (default: 0.0)
use_colpali: Whether to use ColPali-style embedding model to retrieve chunks (only works for documents ingested with `use_colpali=True`)
Returns:
List[FinalChunkResult]
Example:
```python
chunks = await db.retrieve_chunks(
"What are the key findings?",
filters={"department": "research"}
)
```
"""
request = {
"query": query,
"filters": filters,
"k": k,
"min_score": min_score,
"use_colpali": use_colpali,
}
response = await self._request("POST", "retrieve/chunks", data=request)
chunks = [ChunkResult(**r) for r in response]
final_chunks = []
for chunk in chunks:
if chunk.metadata.get("is_image"):
try:
# Handle data URI format "data:image/png;base64,..."
content = chunk.content
if content.startswith("data:"):
# Extract the base64 part after the comma
content = content.split(",", 1)[1]
# Now decode the base64 string
import base64
import io
from PIL import Image
image_bytes = base64.b64decode(content)
content = Image.open(io.BytesIO(image_bytes))
except Exception as e:
print(f"Error processing image: {str(e)}")
# Fall back to using the content as text
content = chunk.content
else:
content = chunk.content
final_chunks.append(
FinalChunkResult(
content=content,
score=chunk.score,
document_id=chunk.document_id,
chunk_number=chunk.chunk_number,
metadata=chunk.metadata,
content_type=chunk.content_type,
filename=chunk.filename,
download_url=chunk.download_url,
)
)
return final_chunks
async def retrieve_docs(
self,
query: str,
filters: Optional[Dict[str, Any]] = None,
k: int = 4,
min_score: float = 0.0,
use_colpali: bool = True,
) -> List[DocumentResult]:
"""
Retrieve relevant documents.
Args:
query: Search query text
filters: Optional metadata filters
k: Number of results (default: 4)
min_score: Minimum similarity threshold (default: 0.0)
use_colpali: Whether to use ColPali-style embedding model to retrieve documents (only works for documents ingested with `use_colpali=True`)
Returns:
List[DocumentResult]
Example:
```python
docs = await db.retrieve_docs(
"machine learning",
k=5
)
```
"""
request = {
"query": query,
"filters": filters,
"k": k,
"min_score": min_score,
"use_colpali": use_colpali,
}
response = await self._request("POST", "retrieve/docs", data=request)
return [DocumentResult(**r) for r in response]
async def query(
self,
query: str,
filters: Optional[Dict[str, Any]] = None,
k: int = 4,
min_score: float = 0.0,
max_tokens: Optional[int] = None,
temperature: Optional[float] = None,
use_colpali: bool = True,
graph_name: Optional[str] = None,
hop_depth: int = 1,
include_paths: bool = False,
) -> CompletionResponse:
"""
Generate completion using relevant chunks as context.
Args:
query: Query text
filters: Optional metadata filters
k: Number of chunks to use as context (default: 4)
min_score: Minimum similarity threshold (default: 0.0)
max_tokens: Maximum tokens in completion
temperature: Model temperature
use_colpali: Whether to use ColPali-style embedding model to generate the completion (only works for documents ingested with `use_colpali=True`)
graph_name: Optional name of the graph to use for knowledge graph-enhanced retrieval
hop_depth: Number of relationship hops to traverse in the graph (1-3)
include_paths: Whether to include relationship paths in the response
Returns:
CompletionResponse
Example:
```python
# Standard query
response = await db.query(
"What are the key findings about customer satisfaction?",
filters={"department": "research"},
temperature=0.7
)
# Knowledge graph enhanced query
response = await db.query(
"How does product X relate to customer segment Y?",
graph_name="market_graph",
hop_depth=2,
include_paths=True
)
print(response.completion)
# If include_paths=True, you can inspect the graph paths
if response.metadata and "graph" in response.metadata:
for path in response.metadata["graph"]["paths"]:
print(" -> ".join(path))
```
"""
request = {
"query": query,
"filters": filters,
"k": k,
"min_score": min_score,
"max_tokens": max_tokens,
"temperature": temperature,
"use_colpali": use_colpali,
"graph_name": graph_name,
"hop_depth": hop_depth,
"include_paths": include_paths,
}
response = await self._request("POST", "query", data=request)
return CompletionResponse(**response)
async def list_documents(
self, skip: int = 0, limit: int = 100, filters: Optional[Dict[str, Any]] = None
) -> List[Document]:
"""
List accessible documents.
Args:
skip: Number of documents to skip
limit: Maximum number of documents to return
filters: Optional filters
Returns:
List[Document]: List of accessible documents
Example:
```python
# Get first page
docs = await db.list_documents(limit=10)
# Get next page
next_page = await db.list_documents(skip=10, limit=10, filters={"department": "research"})
```
"""
response = await self._request(
"GET", f"documents?skip={skip}&limit={limit}&filters={filters}"
)
docs = [Document(**doc) for doc in response]
for doc in docs:
doc._client = self
return docs
async def get_document(self, document_id: str) -> Document:
"""
Get document metadata by ID.
Args:
document_id: ID of the document
Returns:
Document: Document metadata
Example:
```python
doc = await db.get_document("doc_123")
print(f"Title: {doc.metadata.get('title')}")
```
"""
response = await self._request("GET", f"documents/{document_id}")
doc = Document(**response)
doc._client = self
return doc
async def get_document_by_filename(self, filename: str) -> Document:
"""
Get document metadata by filename.
If multiple documents have the same filename, returns the most recently updated one.
Args:
filename: Filename of the document to retrieve
Returns:
Document: Document metadata
Example:
```python
doc = await db.get_document_by_filename("report.pdf")
print(f"Document ID: {doc.external_id}")
```
"""
response = await self._request("GET", f"documents/filename/{filename}")
doc = Document(**response)
doc._client = self
return doc
async def update_document_with_text(
self,
document_id: str,
content: str,
filename: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None,
rules: Optional[List] = None,
update_strategy: str = "add",
use_colpali: Optional[bool] = None,
) -> Document:
"""
Update a document with new text content using the specified strategy.
Args:
document_id: ID of the document to update
content: The new content to add
filename: Optional new filename for the document
metadata: Additional metadata to update (optional)
rules: Optional list of rules to apply to the content
update_strategy: Strategy for updating the document (currently only 'add' is supported)
use_colpali: Whether to use multi-vector embedding
Returns:
Document: Updated document metadata
Example:
```python
# Add new content to an existing document
updated_doc = await db.update_document_with_text(
document_id="doc_123",
content="This is additional content that will be appended to the document.",
filename="updated_document.txt",
metadata={"category": "updated"},
update_strategy="add"
)
print(f"Document version: {updated_doc.system_metadata.get('version')}")
```
"""
# Use the dedicated text update endpoint
request = IngestTextRequest(
content=content,
filename=filename,
metadata=metadata or {},
rules=[self._convert_rule(r) for r in (rules or [])],
use_colpali=use_colpali if use_colpali is not None else True,
)
params = {}
if update_strategy != "add":
params["update_strategy"] = update_strategy
response = await self._request(
"POST",
f"documents/{document_id}/update_text",
data=request.model_dump(),
params=params
)
doc = Document(**response)
doc._client = self
return doc
async def update_document_with_file(
self,
document_id: str,
file: Union[str, bytes, BinaryIO, Path],
filename: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None,
rules: Optional[List] = None,
update_strategy: str = "add",
use_colpali: Optional[bool] = None,
) -> Document:
"""
Update a document with content from a file using the specified strategy.
Args:
document_id: ID of the document to update
file: File to add (path string, bytes, file object, or Path)
filename: Name of the file
metadata: Additional metadata to update (optional)
rules: Optional list of rules to apply to the content
update_strategy: Strategy for updating the document (currently only 'add' is supported)
use_colpali: Whether to use multi-vector embedding
Returns:
Document: Updated document metadata
Example:
```python
# Add content from a file to an existing document
updated_doc = await db.update_document_with_file(
document_id="doc_123",
file="path/to/update.pdf",
metadata={"status": "updated"},
update_strategy="add"
)
print(f"Document version: {updated_doc.system_metadata.get('version')}")
```
"""
# Handle different file input types
if isinstance(file, (str, Path)):
file_path = Path(file)
if not file_path.exists():
raise ValueError(f"File not found: {file}")
filename = file_path.name if filename is None else filename
with open(file_path, "rb") as f:
content = f.read()
file_obj = BytesIO(content)
elif isinstance(file, bytes):
if filename is None:
raise ValueError("filename is required when updating with bytes")
file_obj = BytesIO(file)
else:
if filename is None:
raise ValueError("filename is required when updating with file object")
file_obj = file
try:
# Prepare multipart form data
files = {"file": (filename, file_obj)}
# Convert metadata and rules to JSON strings
form_data = {
"metadata": json.dumps(metadata or {}),
"rules": json.dumps([self._convert_rule(r) for r in (rules or [])]),
"update_strategy": update_strategy,
}
if use_colpali is not None:
form_data["use_colpali"] = str(use_colpali).lower()
# Use the dedicated file update endpoint
response = await self._request(
"POST", f"documents/{document_id}/update_file", data=form_data, files=files
)
doc = Document(**response)
doc._client = self
return doc
finally:
# Close file if we opened it
if isinstance(file, (str, Path)):
file_obj.close()
async def update_document_metadata(
self,
document_id: str,
metadata: Dict[str, Any],
) -> Document:
"""
Update a document's metadata only.
Args:
document_id: ID of the document to update
metadata: Metadata to update
Returns:
Document: Updated document metadata
Example:
```python
# Update just the metadata of a document
updated_doc = await db.update_document_metadata(
document_id="doc_123",
metadata={"status": "reviewed", "reviewer": "Jane Smith"}
)
print(f"Updated metadata: {updated_doc.metadata}")
```
"""
# Use the dedicated metadata update endpoint
response = await self._request("POST", f"documents/{document_id}/update_metadata", data=metadata)
doc = Document(**response)
doc._client = self
return doc
async def update_document_by_filename_with_text(
self,
filename: str,
content: str,
new_filename: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None,
rules: Optional[List] = None,
update_strategy: str = "add",
use_colpali: Optional[bool] = None,
) -> Document:
"""
Update a document identified by filename with new text content using the specified strategy.
Args:
filename: Filename of the document to update
content: The new content to add
new_filename: Optional new filename for the document
metadata: Additional metadata to update (optional)
rules: Optional list of rules to apply to the content
update_strategy: Strategy for updating the document (currently only 'add' is supported)
use_colpali: Whether to use multi-vector embedding
Returns:
Document: Updated document metadata
Example:
```python
# Add new content to an existing document identified by filename
updated_doc = await db.update_document_by_filename_with_text(
filename="report.pdf",
content="This is additional content that will be appended to the document.",
new_filename="updated_report.pdf",
metadata={"category": "updated"},
update_strategy="add"
)
print(f"Document version: {updated_doc.system_metadata.get('version')}")
```
"""
# First get the document by filename to obtain its ID
doc = await self.get_document_by_filename(filename)
# Then use the regular update_document_with_text endpoint with the document ID
return await self.update_document_with_text(
document_id=doc.external_id,
content=content,
filename=new_filename,
metadata=metadata,
rules=rules,
update_strategy=update_strategy,
use_colpali=use_colpali
)
async def update_document_by_filename_with_file(
self,
filename: str,
file: Union[str, bytes, BinaryIO, Path],
new_filename: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None,
rules: Optional[List] = None,
update_strategy: str = "add",
use_colpali: Optional[bool] = None,
) -> Document:
"""
Update a document identified by filename with content from a file using the specified strategy.
Args:
filename: Filename of the document to update
file: File to add (path string, bytes, file object, or Path)
new_filename: Optional new filename for the document (defaults to the filename of the file)
metadata: Additional metadata to update (optional)
rules: Optional list of rules to apply to the content
update_strategy: Strategy for updating the document (currently only 'add' is supported)
use_colpali: Whether to use multi-vector embedding
Returns:
Document: Updated document metadata
Example:
```python
# Add content from a file to an existing document identified by filename
updated_doc = await db.update_document_by_filename_with_file(
filename="report.pdf",
file="path/to/update.pdf",
metadata={"status": "updated"},
update_strategy="add"
)
print(f"Document version: {updated_doc.system_metadata.get('version')}")
```
"""
# First get the document by filename to obtain its ID
doc = await self.get_document_by_filename(filename)
# Then use the regular update_document_with_file endpoint with the document ID
return await self.update_document_with_file(
document_id=doc.external_id,
file=file,
filename=new_filename,
metadata=metadata,
rules=rules,
update_strategy=update_strategy,
use_colpali=use_colpali
)
async def update_document_by_filename_metadata(
self,
filename: str,
metadata: Dict[str, Any],
new_filename: Optional[str] = None,
) -> Document:
"""
Update a document's metadata using filename to identify the document.
Args:
filename: Filename of the document to update
metadata: Metadata to update
new_filename: Optional new filename to assign to the document
Returns:
Document: Updated document metadata
Example:
```python
# Update just the metadata of a document identified by filename
updated_doc = await db.update_document_by_filename_metadata(
filename="report.pdf",
metadata={"status": "reviewed", "reviewer": "Jane Smith"},
new_filename="reviewed_report.pdf" # Optional: rename the file
)
print(f"Updated metadata: {updated_doc.metadata}")
```
"""
# First get the document by filename to obtain its ID
doc = await self.get_document_by_filename(filename)
# Update the metadata
result = await self.update_document_metadata(
document_id=doc.external_id,
metadata=metadata,
)
# If new_filename is provided, update the filename as well
if new_filename:
# Create a request that retains the just-updated metadata but also changes filename
combined_metadata = result.metadata.copy()
# Update the document again with filename change and the same metadata
response = await self._request(
"POST",
f"documents/{doc.external_id}/update_text",
data={
"content": "",
"filename": new_filename,
"metadata": combined_metadata,
"rules": []
}
)
result = Document(**response)
result._client = self
return result
async def batch_get_documents(self, document_ids: List[str]) -> List[Document]:
"""
Retrieve multiple documents by their IDs in a single batch operation.
Args:
document_ids: List of document IDs to retrieve
Returns:
List[Document]: List of document metadata for found documents
Example:
```python
docs = await db.batch_get_documents(["doc_123", "doc_456", "doc_789"])
for doc in docs:
print(f"Document {doc.external_id}: {doc.metadata.get('title')}")
```
"""
response = await self._request("POST", "batch/documents", data=document_ids)
docs = [Document(**doc) for doc in response]
for doc in docs:
doc._client = self
return docs
async def batch_get_chunks(self, sources: List[Union[ChunkSource, Dict[str, Any]]]) -> List[FinalChunkResult]:
"""
Retrieve specific chunks by their document ID and chunk number in a single batch operation.
Args:
sources: List of ChunkSource objects or dictionaries with document_id and chunk_number
Returns:
List[FinalChunkResult]: List of chunk results
Example:
```python
# Using dictionaries
sources = [
{"document_id": "doc_123", "chunk_number": 0},
{"document_id": "doc_456", "chunk_number": 2}
]
# Or using ChunkSource objects
from databridge.models import ChunkSource
sources = [
ChunkSource(document_id="doc_123", chunk_number=0),
ChunkSource(document_id="doc_456", chunk_number=2)
]
chunks = await db.batch_get_chunks(sources)
for chunk in chunks:
print(f"Chunk from {chunk.document_id}, number {chunk.chunk_number}: {chunk.content[:50]}...")
```
"""
# Convert to list of dictionaries if needed
source_dicts = []
for source in sources:
if isinstance(source, dict):
source_dicts.append(source)
else:
source_dicts.append(source.model_dump())
response = await self._request("POST", "batch/chunks", data=source_dicts)
chunks = [ChunkResult(**r) for r in response]
final_chunks = []
for chunk in chunks:
if chunk.metadata.get("is_image"):
try:
# Handle data URI format "data:image/png;base64,..."
content = chunk.content
if content.startswith("data:"):
# Extract the base64 part after the comma
content = content.split(",", 1)[1]
# Now decode the base64 string
import base64
import io
from PIL import Image
image_bytes = base64.b64decode(content)
content = Image.open(io.BytesIO(image_bytes))
except Exception as e:
print(f"Error processing image: {str(e)}")
# Fall back to using the content as text
content = chunk.content
else:
content = chunk.content
final_chunks.append(
FinalChunkResult(
content=content,
score=chunk.score,
document_id=chunk.document_id,
chunk_number=chunk.chunk_number,
metadata=chunk.metadata,
content_type=chunk.content_type,
filename=chunk.filename,
download_url=chunk.download_url,
)
)
return final_chunks
async def create_cache(
self,
name: str,
model: str,
gguf_file: str,
filters: Optional[Dict[str, Any]] = None,
docs: Optional[List[str]] = None,
) -> Dict[str, Any]:
"""
Create a new cache with specified configuration.
Args:
name: Name of the cache to create
model: Name of the model to use (e.g. "llama2")
gguf_file: Name of the GGUF file to use for the model
filters: Optional metadata filters to determine which documents to include. These filters will be applied in addition to any specific docs provided.
docs: Optional list of specific document IDs to include. These docs will be included in addition to any documents matching the filters.
Returns:
Dict[str, Any]: Created cache configuration
Example:
```python
# This will include both:
# 1. Any documents with category="programming"
# 2. The specific documents "doc1" and "doc2" (regardless of their category)
cache = await db.create_cache(
name="programming_cache",
model="llama2",
gguf_file="llama-2-7b-chat.Q4_K_M.gguf",
filters={"category": "programming"},
docs=["doc1", "doc2"]
)
```
"""
# Build query parameters for name, model and gguf_file
params = {"name": name, "model": model, "gguf_file": gguf_file}
# Build request body for filters and docs
request = {"filters": filters, "docs": docs}
response = await self._request("POST", "cache/create", request, params=params)
return response
async def get_cache(self, name: str) -> AsyncCache:
"""
Get a cache by name.
Args:
name: Name of the cache to retrieve
Returns:
cache: A cache object that is used to interact with the cache.
Example:
```python
cache = await db.get_cache("programming_cache")
```
"""
response = await self._request("GET", f"cache/{name}")
if response.get("exists", False):
return AsyncCache(self, name)
raise ValueError(f"Cache '{name}' not found")
async def create_graph(
self,
name: str,
filters: Optional[Dict[str, Any]] = None,
documents: Optional[List[str]] = None,
) -> Graph:
"""
Create a graph from documents.
This method extracts entities and relationships from documents
matching the specified filters or document IDs and creates a graph.
Args:
name: Name of the graph to create
filters: Optional metadata filters to determine which documents to include
documents: Optional list of specific document IDs to include
Returns:
Graph: The created graph object
Example:
```python
# Create a graph from documents with category="research"
graph = await db.create_graph(
name="research_graph",
filters={"category": "research"}
)
# Create a graph from specific documents
graph = await db.create_graph(
name="custom_graph",
documents=["doc1", "doc2", "doc3"]
)
```
"""
request = {
"name": name,
"filters": filters,
"documents": documents,
}
response = await self._request("POST", "graph/create", request)
return Graph(**response)
async def get_graph(self, name: str) -> Graph:
"""
Get a graph by name.
Args:
name: Name of the graph to retrieve
Returns:
Graph: The requested graph object
Example:
```python
# Get a graph by name
graph = await db.get_graph("finance_graph")
print(f"Graph has {len(graph.entities)} entities and {len(graph.relationships)} relationships")
```
"""
response = await self._request("GET", f"graph/{name}")
return Graph(**response)
async def list_graphs(self) -> List[Graph]:
"""
List all graphs the user has access to.
Returns:
List[Graph]: List of graph objects
Example:
```python
# List all accessible graphs
graphs = await db.list_graphs()
for graph in graphs:
print(f"Graph: {graph.name}, Entities: {len(graph.entities)}")
```
"""
response = await self._request("GET", "graphs")
return [Graph(**graph) for graph in response]
async def delete_document(self, document_id: str) -> Dict[str, str]:
"""
Delete a document and all its associated data.
This method deletes a document and all its associated data, including:
- Document metadata
- Document content in storage
- Document chunks and embeddings in vector store
Args:
document_id: ID of the document to delete
Returns:
Dict[str, str]: Deletion status
Example:
```python
# Delete a document
result = await db.delete_document("doc_123")
print(result["message"]) # Document doc_123 deleted successfully
```
"""
response = await self._request("DELETE", f"documents/{document_id}")
return response
async def delete_document_by_filename(self, filename: str) -> Dict[str, str]:
"""
Delete a document by its filename.
This is a convenience method that first retrieves the document ID by filename
and then deletes the document by ID.
Args:
filename: Filename of the document to delete
Returns:
Dict[str, str]: Deletion status
Example:
```python
# Delete a document by filename
result = await db.delete_document_by_filename("report.pdf")
print(result["message"])
```
"""
# First get the document by filename to obtain its ID
doc = await self.get_document_by_filename(filename)
# Then delete the document by ID
return await self.delete_document(doc.external_id)
async def close(self):
"""Close the HTTP client"""
await self._client.aclose()
async def __aenter__(self):
return self
async def __aexit__(self, exc_type, exc_val, exc_tb):
await self.close()