2025-03-05 10:56:02 -05:00

564 lines
19 KiB
Python

import base64
from io import BytesIO
import io
from PIL.Image import Image as PILImage
from PIL import Image
import json
from pathlib import Path
from typing import Dict, Any, List, Optional, Union, BinaryIO
from urllib.parse import urlparse
import jwt
from pydantic import BaseModel, Field
import requests
from .models import Document, ChunkResult, DocumentResult, CompletionResponse, IngestTextRequest
from .rules import Rule
# Type alias for rules
RuleOrDict = Union[Rule, Dict[str, Any]]
class Cache:
def __init__(self, db: "DataBridge", name: str):
self._db = db
self._name = name
def update(self) -> bool:
response = self._db._request("POST", f"cache/{self._name}/update")
return response.get("success", False)
def add_docs(self, docs: List[str]) -> bool:
response = self._db._request("POST", f"cache/{self._name}/add_docs", {"docs": docs})
return response.get("success", False)
def query(
self, query: str, max_tokens: Optional[int] = None, temperature: Optional[float] = None
) -> CompletionResponse:
response = self._db._request(
"POST",
f"cache/{self._name}/query",
params={"query": query, "max_tokens": max_tokens, "temperature": temperature},
data="",
)
return CompletionResponse(**response)
class FinalChunkResult(BaseModel):
content: str | PILImage = Field(..., description="Chunk content")
score: float = Field(..., description="Relevance score")
document_id: str = Field(..., description="Parent document ID")
chunk_number: int = Field(..., description="Chunk sequence number")
metadata: Dict[str, Any] = Field(default_factory=dict, description="Document metadata")
content_type: str = Field(..., description="Content type")
filename: Optional[str] = Field(None, description="Original filename")
download_url: Optional[str] = Field(None, description="URL to download full document")
class Config:
arbitrary_types_allowed = True
class DataBridge:
"""
DataBridge client for document operations.
Args:
uri (str, optional): DataBridge URI in format "databridge://<owner_id>:<token>@<host>".
If not provided, connects to http://localhost:8000 without authentication.
timeout (int, optional): Request timeout in seconds. Defaults to 30.
is_local (bool, optional): Whether connecting to local development server. Defaults to False.
Examples:
```python
# Without authentication
db = DataBridge()
# With authentication
db = DataBridge("databridge://owner_id:token@api.databridge.ai")
```
"""
def __init__(self, uri: Optional[str] = None, timeout: int = 30, is_local: bool = False):
self._timeout = timeout
self._session = requests.Session()
if is_local:
self._session.verify = False # Disable SSL for localhost
self._is_local = is_local
if uri:
self._setup_auth(uri)
else:
self._base_url = "http://localhost:8000"
self._auth_token = None
def _setup_auth(self, uri: str) -> None:
"""Setup authentication from URI"""
parsed = urlparse(uri)
if not parsed.netloc:
raise ValueError("Invalid URI format")
# Split host and auth parts
auth, host = parsed.netloc.split("@")
_, self._auth_token = auth.split(":")
# Set base URL
self._base_url = f"{'http' if self._is_local else 'https'}://{host}"
# Basic token validation
jwt.decode(self._auth_token, options={"verify_signature": False})
def _request(
self,
method: str,
endpoint: str,
data: Optional[Dict[str, Any]] = None,
files: Optional[Dict[str, Any]] = None,
params: Optional[Dict[str, Any]] = None,
) -> Dict[str, Any]:
"""Make HTTP request"""
headers = {}
if self._auth_token: # Only add auth header if we have a token
headers["Authorization"] = f"Bearer {self._auth_token}"
# Configure request data based on type
if files:
# Multipart form data for files
request_data = {"files": files, "data": data}
# Don't set Content-Type, let requests handle it
else:
# JSON for everything else
headers["Content-Type"] = "application/json"
request_data = {"json": data}
response = self._session.request(
method,
f"{self._base_url}/{endpoint.lstrip('/')}",
headers=headers,
timeout=self._timeout,
params=params,
**request_data,
)
response.raise_for_status()
return response.json()
def _convert_rule(self, rule: RuleOrDict) -> Dict[str, Any]:
"""Convert a rule to a dictionary format"""
if hasattr(rule, "to_dict"):
return rule.to_dict()
return rule
def ingest_text(
self,
content: str,
filename: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None,
rules: Optional[List[RuleOrDict]] = None,
use_colpali: bool = True,
) -> Document:
"""
Ingest a text document into DataBridge.
Args:
content: Text content to ingest
metadata: Optional metadata dictionary
rules: Optional list of rules to apply during ingestion. Can be:
- MetadataExtractionRule: Extract metadata using a schema
- NaturalLanguageRule: Transform content using natural language
use_colpali: Whether to use ColPali-style embedding model to ingest the text (slower, but significantly better retrieval accuracy for text and images)
Returns:
Document: Metadata of the ingested document
Example:
```python
from databridge.rules import MetadataExtractionRule, NaturalLanguageRule
from pydantic import BaseModel
class DocumentInfo(BaseModel):
title: str
author: str
date: str
doc = db.ingest_text(
"Machine learning is fascinating...",
metadata={"category": "tech"},
rules=[
# Extract metadata using schema
MetadataExtractionRule(schema=DocumentInfo),
# Transform content
NaturalLanguageRule(prompt="Shorten the content, use keywords")
]
)
```
"""
request = IngestTextRequest(
content=content,
filename=filename,
metadata=metadata or {},
rules=[self._convert_rule(r) for r in (rules or [])],
use_colpali=use_colpali,
)
response = self._request("POST", "ingest/text", data=request.model_dump())
return Document(**response)
def ingest_file(
self,
file: Union[str, bytes, BinaryIO, Path],
filename: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None,
rules: Optional[List[RuleOrDict]] = None,
use_colpali: bool = True,
) -> Document:
"""
Ingest a file document into DataBridge.
Args:
file: File to ingest (path string, bytes, file object, or Path)
filename: Name of the file
metadata: Optional metadata dictionary
rules: Optional list of rules to apply during ingestion. Can be:
- MetadataExtractionRule: Extract metadata using a schema
- NaturalLanguageRule: Transform content using natural language
use_colpali: Whether to use ColPali-style embedding model to ingest the file (slower, but significantly better retrieval accuracy for images)
Returns:
Document: Metadata of the ingested document
Example:
```python
from databridge.rules import MetadataExtractionRule, NaturalLanguageRule
from pydantic import BaseModel
class DocumentInfo(BaseModel):
title: str
author: str
department: str
doc = db.ingest_file(
"document.pdf",
filename="document.pdf",
metadata={"category": "research"},
rules=[
MetadataExtractionRule(schema=DocumentInfo),
NaturalLanguageRule(prompt="Extract key points only")
], # Optional
use_colpali=True, # Optional
)
```
"""
# Handle different file input types
if isinstance(file, (str, Path)):
file_path = Path(file)
if not file_path.exists():
raise ValueError(f"File not found: {file}")
filename = file_path.name if filename is None else filename
with open(file_path, "rb") as f:
content = f.read()
file_obj = BytesIO(content)
elif isinstance(file, bytes):
if filename is None:
raise ValueError("filename is required when ingesting bytes")
file_obj = BytesIO(file)
else:
if filename is None:
raise ValueError("filename is required when ingesting file object")
file_obj = file
try:
# Prepare multipart form data
files = {"file": (filename, file_obj)}
# Add metadata and rules
form_data = {
"metadata": json.dumps(metadata or {}),
"rules": json.dumps([self._convert_rule(r) for r in (rules or [])]),
}
response = self._request(
"POST", f"ingest/file?use_colpali={use_colpali}", data=form_data, files=files
)
return Document(**response)
finally:
# Close file if we opened it
if isinstance(file, (str, Path)):
file_obj.close()
def retrieve_chunks(
self,
query: str,
filters: Optional[Dict[str, Any]] = None,
k: int = 4,
min_score: float = 0.0,
use_colpali: bool = True,
) -> List[FinalChunkResult]:
"""
Retrieve relevant chunks.
Args:
query: Search query text
filters: Optional metadata filters
k: Number of results (default: 4)
min_score: Minimum similarity threshold (default: 0.0)
use_colpali: Whether to use ColPali-style embedding model to retrieve the chunks (only works for documents ingested with `use_colpali=True`)
Returns:
List[ChunkResult]
Example:
```python
chunks = db.retrieve_chunks(
"What are the key findings?",
filters={"department": "research"}
)
```
"""
request = {
"query": query,
"filters": filters,
"k": k,
"min_score": min_score,
"use_colpali": json.dumps(use_colpali),
}
response = self._request("POST", "retrieve/chunks", request)
chunks = [ChunkResult(**r) for r in response]
final_chunks = []
for chunk in chunks:
if chunk.metadata.get("is_image"):
try:
# Handle data URI format "data:image/png;base64,..."
content = chunk.content
if content.startswith("data:"):
# Extract the base64 part after the comma
content = content.split(",", 1)[1]
# Now decode the base64 string
image_bytes = base64.b64decode(content)
content = Image.open(io.BytesIO(image_bytes))
except Exception as e:
print(f"Error processing image: {str(e)}")
# Fall back to using the content as text
print(chunk.content)
else:
content = chunk.content
final_chunks.append(
FinalChunkResult(
content=content,
score=chunk.score,
document_id=chunk.document_id,
chunk_number=chunk.chunk_number,
metadata=chunk.metadata,
content_type=chunk.content_type,
filename=chunk.filename,
download_url=chunk.download_url,
)
)
return final_chunks
def retrieve_docs(
self,
query: str,
filters: Optional[Dict[str, Any]] = None,
k: int = 4,
min_score: float = 0.0,
use_colpali: bool = True,
) -> List[DocumentResult]:
"""
Retrieve relevant documents.
Args:
query: Search query text
filters: Optional metadata filters
k: Number of results (default: 4)
min_score: Minimum similarity threshold (default: 0.0)
use_colpali: Whether to use ColPali-style embedding model to retrieve the documents (only works for documents ingested with `use_colpali=True`)
Returns:
List[DocumentResult]
Example:
```python
docs = db.retrieve_docs(
"machine learning",
k=5
)
```
"""
request = {
"query": query,
"filters": filters,
"k": k,
"min_score": min_score,
"use_colpali": json.dumps(use_colpali),
}
response = self._request("POST", "retrieve/docs", request)
return [DocumentResult(**r) for r in response]
def query(
self,
query: str,
filters: Optional[Dict[str, Any]] = None,
k: int = 4,
min_score: float = 0.0,
max_tokens: Optional[int] = None,
temperature: Optional[float] = None,
use_colpali: bool = True,
) -> CompletionResponse:
"""
Generate completion using relevant chunks as context.
Args:
query: Query text
filters: Optional metadata filters
k: Number of chunks to use as context (default: 4)
min_score: Minimum similarity threshold (default: 0.0)
max_tokens: Maximum tokens in completion
temperature: Model temperature
use_colpali: Whether to use ColPali-style embedding model to generate the completion (only works for documents ingested with `use_colpali=True`)
Returns:
CompletionResponse
Example:
```python
response = db.query(
"What are the key findings about customer satisfaction?",
filters={"department": "research"},
temperature=0.7
)
print(response.completion)
```
"""
request = {
"query": query,
"filters": filters,
"k": k,
"min_score": min_score,
"max_tokens": max_tokens,
"temperature": temperature,
"use_colpali": json.dumps(use_colpali),
}
response = self._request("POST", "query", request)
return CompletionResponse(**response)
def list_documents(
self, skip: int = 0, limit: int = 100, filters: Optional[Dict[str, Any]] = None
) -> List[Document]:
"""
List accessible documents.
Args:
skip: Number of documents to skip
limit: Maximum number of documents to return
filters: Optional filters
Returns:
List[Document]: List of accessible documents
Example:
```python
# Get first page
docs = db.list_documents(limit=10)
# Get next page
next_page = db.list_documents(skip=10, limit=10, filters={"department": "research"})
```
"""
response = self._request("GET", f"documents?skip={skip}&limit={limit}&filters={filters}")
return [Document(**doc) for doc in response]
def get_document(self, document_id: str) -> Document:
"""
Get document metadata by ID.
Args:
document_id: ID of the document
Returns:
Document: Document metadata
Example:
```python
doc = db.get_document("doc_123")
print(f"Title: {doc.metadata.get('title')}")
```
"""
response = self._request("GET", f"documents/{document_id}")
return Document(**response)
def create_cache(
self,
name: str,
model: str,
gguf_file: str,
filters: Optional[Dict[str, Any]] = None,
docs: Optional[List[str]] = None,
) -> Dict[str, Any]:
"""
Create a new cache with specified configuration.
Args:
name: Name of the cache to create
model: Name of the model to use (e.g. "llama2")
gguf_file: Name of the GGUF file to use for the model
filters: Optional metadata filters to determine which documents to include. These filters will be applied in addition to any specific docs provided.
docs: Optional list of specific document IDs to include. These docs will be included in addition to any documents matching the filters.
Returns:
Dict[str, Any]: Created cache configuration
Example:
```python
# This will include both:
# 1. Any documents with category="programming"
# 2. The specific documents "doc1" and "doc2" (regardless of their category)
cache = db.create_cache(
name="programming_cache",
model="llama2",
gguf_file="llama-2-7b-chat.Q4_K_M.gguf",
filters={"category": "programming"},
docs=["doc1", "doc2"]
)
```
"""
# Build query parameters for name, model and gguf_file
params = {"name": name, "model": model, "gguf_file": gguf_file}
# Build request body for filters and docs
request = {"filters": filters, "docs": docs}
response = self._request("POST", "cache/create", request, params=params)
return response
def get_cache(self, name: str) -> Cache:
"""
Get a cache by name.
Args:
name: Name of the cache to retrieve
Returns:
cache: A cache object that is used to interact with the cache.
Example:
```python
cache = db.get_cache("programming_cache")
```
"""
response = self._request("GET", f"cache/{name}")
if response.get("exists", False):
return Cache(self, name)
raise ValueError(f"Cache '{name}' not found")
def close(self):
"""Close the HTTP session"""
self._session.close()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.close()