"Given a text string (e.g., `\"tiktoken is great!\"`) and an encoding (e.g., `\"cl100k_base\"`), a tokenizer can split the text string into a list of tokens (e.g., `[\"t\", \"ik\", \"token\", \" is\", \" great\", \"!\"]`).\n",
"Splitting text strings into tokens is useful because GPT models see text in the form of tokens. Knowing how many tokens are in a text string can tell you (a) whether the string is too long for a text model to process and (b) how much an OpenAI API call costs (as usage is priced by token). Different models use different encodings.\n",
"\n",
"\n",
"## Encodings\n",
"\n",
"Encodings specify how text is converted into tokens. Different models use different encodings.\n",
"(OpenAI makes no endorsements or guarantees of third-party libraries.)\n",
"\n",
"\n",
"## How strings are typically tokenized\n",
"\n",
"In English, tokens commonly range in length from one character to one word (e.g., `\"t\"` or `\" great\"`), though in some languages tokens can be shorter than one character or longer than one word. Spaces are usually grouped with the starts of words (e.g., `\" is\"` instead of `\"is \"` or `\" \"`+`\"is\"`). You can quickly check how a string is tokenized at the [OpenAI Tokenizer](https://beta.openai.com/tokenizer)."
"(The `b` in front of the strings indicates that the strings are byte strings.)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5. Comparing encodings\n",
"\n",
"Different encodings can vary in how they split words, group spaces, and handle non-English characters. Using the methods above, we can compare different encodings on a few example strings."
"ChatGPT models like `gpt-3.5-turbo` use tokens in the same way as other models, but because of their message-based formatting, it's more difficult to count how many tokens will be used by a conversation.\n",
"\n",
"Below is an example function for counting tokens for messages passed to `gpt-3.5-turbo-0301`.\n",
"\n",
"The exact way that messages are converted into tokens may change from model to model. So when future model versions are released, the answers returned by this function may be only approximate. The [ChatML documentation](https://github.com/openai/openai-python/blob/main/chatml.md) explains how messages are converted into tokens by the OpenAI API, and may be useful for writing your own function."
" if model == \"gpt-3.5-turbo-0301\": # note: future models may deviate from this\n",
" num_tokens = 0\n",
" for message in messages:\n",
" num_tokens += 4 # every message follows <im_start>{role/name}\\n{content}<im_end>\\n\n",
" for key, value in message.items():\n",
" num_tokens += len(encoding.encode(value))\n",
" if key == \"name\": # if there's a name, the role is omitted\n",
" num_tokens += -1 # role is always required and always 1 token\n",
" num_tokens += 2 # every reply is primed with <im_start>assistant\n",
" return num_tokens\n",
" else:\n",
" raise NotImplementedError(f\"\"\"num_tokens_from_messages() is not presently implemented for model {model}.\n",
"See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.\"\"\")\n"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"messages = [\n",
" {\"role\": \"system\", \"content\": \"You are a helpful, pattern-following assistant that translates corporate jargon into plain English.\"},\n",
" {\"role\": \"system\", \"name\":\"example_user\", \"content\": \"New synergies will help drive top-line growth.\"},\n",
" {\"role\": \"system\", \"name\": \"example_assistant\", \"content\": \"Things working well together will increase revenue.\"},\n",
" {\"role\": \"system\", \"name\":\"example_user\", \"content\": \"Let's circle back when we have more bandwidth to touch base on opportunities for increased leverage.\"},\n",
" {\"role\": \"system\", \"name\": \"example_assistant\", \"content\": \"Let's talk later when we're less busy about how to do better.\"},\n",
" {\"role\": \"user\", \"content\": \"This late pivot means we don't have time to boil the ocean for the client deliverable.\"},\n",
"]\n"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"126 prompt tokens counted.\n"
]
}
],
"source": [
"# example token count from the function defined above\n",