diff --git a/examples/vector_databases/Using_vector_databases_for_embeddings_search.ipynb b/examples/vector_databases/Using_vector_databases_for_embeddings_search.ipynb
index 964cf35..23b8b0e 100644
--- a/examples/vector_databases/Using_vector_databases_for_embeddings_search.ipynb
+++ b/examples/vector_databases/Using_vector_databases_for_embeddings_search.ipynb
@@ -58,12 +58,15 @@
"# We'll need to install the clients for all vector databases\n",
"!pip install pinecone-client\n",
"!pip install weaviate-client\n",
- "!pip install qdrant-client"
+ "!pip install qdrant-client\n",
+ "\n",
+ "#Install wget to pull zip file\n",
+ "!pip install wget"
]
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": null,
"id": "5be94df6",
"metadata": {},
"outputs": [],
@@ -71,14 +74,12 @@
"import openai\n",
"\n",
"import tiktoken\n",
- "from tenacity import retry, wait_random_exponential, stop_after_attempt\n",
"from typing import List, Iterator\n",
- "import concurrent\n",
- "from tqdm import tqdm\n",
"import pandas as pd\n",
- "from datasets import load_dataset\n",
"import numpy as np\n",
"import os\n",
+ "import wget\n",
+ "from ast import literal_eval\n",
"\n",
"# Pinecone's client library for Python\n",
"import pinecone\n",
@@ -106,287 +107,71 @@
"source": [
"## Load data\n",
"\n",
- "In this section we'll source the data for this task, embed it and format it for insertion into a vector database"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "id": "bd99e08e",
- "metadata": {},
- "outputs": [],
- "source": [
- "# Simple function to take in a list of text objects and return them as a list of embeddings\n",
- "def get_embeddings(input: List):\n",
- " response = openai.Embedding.create(\n",
- " input=input,\n",
- " model=EMBEDDING_MODEL,\n",
- " )[\"data\"]\n",
- " return [data[\"embedding\"] for data in response]\n",
- "\n",
- "def batchify(iterable, n=1):\n",
- " l = len(iterable)\n",
- " for ndx in range(0, l, n):\n",
- " yield iterable[ndx : min(ndx + n, l)]\n",
- "\n",
- "# Function for batching and parallel processing the embeddings\n",
- "def embed_corpus(\n",
- " corpus: List[str],\n",
- " batch_size=64,\n",
- " num_workers=8,\n",
- " max_context_len=8191,\n",
- "):\n",
- "\n",
- " # Encode the corpus, truncating to max_context_len\n",
- " encoding = tiktoken.get_encoding(\"cl100k_base\")\n",
- " encoded_corpus = [\n",
- " encoded_article[:max_context_len] for encoded_article in encoding.encode_batch(corpus)\n",
- " ]\n",
- "\n",
- " # Calculate corpus statistics: the number of inputs, the total number of tokens, and the estimated cost to embed\n",
- " num_tokens = sum(len(article) for article in encoded_corpus)\n",
- " cost_to_embed_tokens = num_tokens / 1_000 * 0.0004\n",
- " print(\n",
- " f\"num_articles={len(encoded_corpus)}, num_tokens={num_tokens}, est_embedding_cost={cost_to_embed_tokens:.2f} USD\"\n",
- " )\n",
- "\n",
- " # Embed the corpus\n",
- " with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor:\n",
- " \n",
- " futures = [\n",
- " executor.submit(get_embeddings, text_batch)\n",
- " for text_batch in batchify(encoded_corpus, batch_size)\n",
- " ]\n",
- "\n",
- " with tqdm(total=len(encoded_corpus)) as pbar:\n",
- " for _ in concurrent.futures.as_completed(futures):\n",
- " pbar.update(batch_size)\n",
- "\n",
- " embeddings = []\n",
- " for future in futures:\n",
- " data = future.result()\n",
- " embeddings.extend(data)\n",
- "\n",
- " return embeddings"
+ "In this section we'll load embedded data that we've prepared previous to this session."
]
},
{
"cell_type": "code",
"execution_count": null,
- "id": "0c1c73cb",
+ "id": "5dff8b55",
"metadata": {},
"outputs": [],
"source": [
- "# We'll use the datasets library to pull the Simple Wikipedia dataset for embedding\n",
- "dataset = list(load_dataset(\"wikipedia\", \"20220301.simple\")[\"train\"])\n",
- "# Limited to 25k articles for demo purposes\n",
- "dataset = dataset[:25_000] "
+ "embeddings_url = 'https://cdn.openai.com/API/examples/data/vector_database_wikipedia_articles_embedded.zip'\n",
+ "\n",
+ "# Warning, the file is pretty big so this will take some time\n",
+ "wget.download(embeddings_url)"
]
},
{
"cell_type": "code",
- "execution_count": 6,
- "id": "e6ee90ce",
+ "execution_count": null,
+ "id": "21097972",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "num_articles=25000, num_tokens=12896881, est_embedding_cost=5.16 USD\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "25024it [01:06, 377.31it/s] "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "CPU times: user 16.3 s, sys: 2.24 s, total: 18.5 s\n",
- "Wall time: 1min 8s\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
- "%%time\n",
- "# Embed the article text\n",
- "dataset_embeddings = embed_corpus([article[\"text\"] for article in dataset])"
+ "import zipfile\n",
+ "with zipfile.ZipFile(\"vector_database_wikipedia_articles_embedded.zip\",\"r\") as zip_ref:\n",
+ " zip_ref.extractall(\"../data\")\n",
+ " \n",
+ "article_df = pd.read_csv('../data/vector_database_wikipedia_articles_embedded.csv')"
]
},
{
"cell_type": "code",
- "execution_count": 7,
- "id": "850c7215",
+ "execution_count": null,
+ "id": "1721e45d",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "num_articles=25000, num_tokens=88300, est_embedding_cost=0.04 USD\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "25024it [00:36, 683.22it/s] \n"
- ]
- }
- ],
+ "outputs": [],
"source": [
- "# Embed the article titles separately\n",
- "title_embeddings = embed_corpus([article[\"title\"] for article in dataset])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 122,
- "id": "1410daaa",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " id | \n",
- " url | \n",
- " title | \n",
- " text | \n",
- " title_vector | \n",
- " content_vector | \n",
- " vector_id | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 1 | \n",
- " https://simple.wikipedia.org/wiki/April | \n",
- " April | \n",
- " April is the fourth month of the year in the J... | \n",
- " [0.001009464613161981, -0.020700545981526375, ... | \n",
- " [-0.011253940872848034, -0.013491976074874401,... | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 2 | \n",
- " https://simple.wikipedia.org/wiki/August | \n",
- " August | \n",
- " August (Aug.) is the eighth month of the year ... | \n",
- " [0.0009286514250561595, 0.000820168002974242, ... | \n",
- " [0.0003609954728744924, 0.007262262050062418, ... | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 6 | \n",
- " https://simple.wikipedia.org/wiki/Art | \n",
- " Art | \n",
- " Art is a creative activity that expresses imag... | \n",
- " [0.003393713850528002, 0.0061537534929811954, ... | \n",
- " [-0.004959689453244209, 0.015772193670272827, ... | \n",
- " 2 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 8 | \n",
- " https://simple.wikipedia.org/wiki/A | \n",
- " A | \n",
- " A or a is the first letter of the English alph... | \n",
- " [0.0153952119871974, -0.013759135268628597, 0.... | \n",
- " [0.024894846603274345, -0.022186409682035446, ... | \n",
- " 3 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 9 | \n",
- " https://simple.wikipedia.org/wiki/Air | \n",
- " Air | \n",
- " Air refers to the Earth's atmosphere. Air is a... | \n",
- " [0.02224554680287838, -0.02044147066771984, -0... | \n",
- " [0.021524671465158463, 0.018522677943110466, -... | \n",
- " 4 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " id url title \\\n",
- "0 1 https://simple.wikipedia.org/wiki/April April \n",
- "1 2 https://simple.wikipedia.org/wiki/August August \n",
- "2 6 https://simple.wikipedia.org/wiki/Art Art \n",
- "3 8 https://simple.wikipedia.org/wiki/A A \n",
- "4 9 https://simple.wikipedia.org/wiki/Air Air \n",
- "\n",
- " text \\\n",
- "0 April is the fourth month of the year in the J... \n",
- "1 August (Aug.) is the eighth month of the year ... \n",
- "2 Art is a creative activity that expresses imag... \n",
- "3 A or a is the first letter of the English alph... \n",
- "4 Air refers to the Earth's atmosphere. Air is a... \n",
- "\n",
- " title_vector \\\n",
- "0 [0.001009464613161981, -0.020700545981526375, ... \n",
- "1 [0.0009286514250561595, 0.000820168002974242, ... \n",
- "2 [0.003393713850528002, 0.0061537534929811954, ... \n",
- "3 [0.0153952119871974, -0.013759135268628597, 0.... \n",
- "4 [0.02224554680287838, -0.02044147066771984, -0... \n",
- "\n",
- " content_vector vector_id \n",
- "0 [-0.011253940872848034, -0.013491976074874401,... 0 \n",
- "1 [0.0003609954728744924, 0.007262262050062418, ... 1 \n",
- "2 [-0.004959689453244209, 0.015772193670272827, ... 2 \n",
- "3 [0.024894846603274345, -0.022186409682035446, ... 3 \n",
- "4 [0.021524671465158463, 0.018522677943110466, -... 4 "
- ]
- },
- "execution_count": 122,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# We will then store the result in another dataframe, and prep the data for insertion into a vector DB\n",
- "article_df = pd.DataFrame(dataset)\n",
- "article_df['title_vector'] = title_embeddings\n",
- "article_df['content_vector'] = dataset_embeddings\n",
- "article_df['vector_id'] = article_df.index\n",
- "article_df['vector_id'] = article_df['vector_id'].apply(str)\n",
"article_df.head()"
]
},
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "960b82af",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Read vectors from strings back into a list\n",
+ "#article_df['title_vector'] = article_df.title_vector.apply(literal_eval)\n",
+ "article_df['content_vector'] = article_df.content_vector.apply(literal_eval)\n",
+ "\n",
+ "# Set vector_id to be a string\n",
+ "article_df['vector_id'] = article_df['vector_id'].apply(str)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a334ab8b",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "len(article_df['title_vector'][0])"
+ ]
+ },
{
"cell_type": "markdown",
"id": "ed32fc87",
@@ -406,7 +191,7 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": null,
"id": "92e6152a",
"metadata": {},
"outputs": [],
@@ -429,7 +214,7 @@
},
{
"cell_type": "code",
- "execution_count": 108,
+ "execution_count": null,
"id": "0a71c575",
"metadata": {},
"outputs": [],
@@ -461,21 +246,10 @@
},
{
"cell_type": "code",
- "execution_count": 124,
+ "execution_count": null,
"id": "7ea9ad46",
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "['wikipedia-articles']"
- ]
- },
- "execution_count": 124,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"# Pick a name for the new index\n",
"index_name = 'wikipedia-articles'\n",
@@ -494,18 +268,10 @@
},
{
"cell_type": "code",
- "execution_count": 126,
+ "execution_count": null,
"id": "5daeba00",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Uploading vectors to content namespace..\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# Upsert content vectors in content namespace - this can take a few minutes\n",
"print(\"Uploading vectors to content namespace..\")\n",
@@ -515,18 +281,10 @@
},
{
"cell_type": "code",
- "execution_count": 127,
+ "execution_count": null,
"id": "5fc1b083",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Uploading vectors to title namespace..\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# Upsert title vectors in title namespace - this can also take a few minutes\n",
"print(\"Uploading vectors to title namespace..\")\n",
@@ -536,25 +294,10 @@
},
{
"cell_type": "code",
- "execution_count": 128,
+ "execution_count": null,
"id": "f90c7fba",
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "{'dimension': 1536,\n",
- " 'index_fullness': 0.1,\n",
- " 'namespaces': {'content': {'vector_count': 25000},\n",
- " 'title': {'vector_count': 25000}},\n",
- " 'total_vector_count': 50000}"
- ]
- },
- "execution_count": 128,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"# Check index size for each namespace to confirm all of our docs have loaded\n",
"index.describe_index_stats()"
@@ -584,7 +327,7 @@
},
{
"cell_type": "code",
- "execution_count": 72,
+ "execution_count": null,
"id": "3c8c2aa1",
"metadata": {},
"outputs": [],
@@ -681,7 +424,7 @@
},
{
"cell_type": "code",
- "execution_count": 113,
+ "execution_count": null,
"id": "b9ea472d",
"metadata": {},
"outputs": [],
@@ -691,21 +434,10 @@
},
{
"cell_type": "code",
- "execution_count": 114,
+ "execution_count": null,
"id": "13be220d",
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "{'classes': []}"
- ]
- },
- "execution_count": 114,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"client.schema.delete_all()\n",
"client.schema.get()"
@@ -713,21 +445,10 @@
},
{
"cell_type": "code",
- "execution_count": 115,
+ "execution_count": null,
"id": "73d33184",
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "True"
- ]
- },
- "execution_count": 115,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"client.is_ready()"
]
@@ -748,53 +469,10 @@
},
{
"cell_type": "code",
- "execution_count": 116,
+ "execution_count": null,
"id": "e868d143",
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "{'classes': [{'class': 'Article',\n",
- " 'invertedIndexConfig': {'bm25': {'b': 0.75, 'k1': 1.2},\n",
- " 'cleanupIntervalSeconds': 60,\n",
- " 'stopwords': {'additions': None, 'preset': 'en', 'removals': None}},\n",
- " 'properties': [{'dataType': ['text'],\n",
- " 'description': 'Title of the article',\n",
- " 'name': 'title',\n",
- " 'tokenization': 'word'},\n",
- " {'dataType': ['text'],\n",
- " 'description': 'Contents of the article',\n",
- " 'name': 'content',\n",
- " 'tokenization': 'word'}],\n",
- " 'shardingConfig': {'virtualPerPhysical': 128,\n",
- " 'desiredCount': 1,\n",
- " 'actualCount': 1,\n",
- " 'desiredVirtualCount': 128,\n",
- " 'actualVirtualCount': 128,\n",
- " 'key': '_id',\n",
- " 'strategy': 'hash',\n",
- " 'function': 'murmur3'},\n",
- " 'vectorIndexConfig': {'skip': False,\n",
- " 'cleanupIntervalSeconds': 300,\n",
- " 'maxConnections': 64,\n",
- " 'efConstruction': 128,\n",
- " 'ef': -1,\n",
- " 'dynamicEfMin': 100,\n",
- " 'dynamicEfMax': 500,\n",
- " 'dynamicEfFactor': 8,\n",
- " 'vectorCacheMaxObjects': 2000000,\n",
- " 'flatSearchCutoff': 40000,\n",
- " 'distance': 'cosine'},\n",
- " 'vectorIndexType': 'hnsw',\n",
- " 'vectorizer': 'none'}]}"
- ]
- },
- "execution_count": 116,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"class_obj = {\n",
" \"class\": \"Article\",\n",
@@ -820,18 +498,10 @@
},
{
"cell_type": "code",
- "execution_count": 117,
+ "execution_count": null,
"id": "786d437f",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Uploading vectors to article schema..\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# Convert DF into a list of tuples\n",
"data_objects = []\n",
@@ -861,49 +531,10 @@
},
{
"cell_type": "code",
- "execution_count": 118,
+ "execution_count": null,
"id": "3658693c",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Kim Jong-nam\n",
- "Kim Jong-nam (May 10, 1971 - February 13, 2017) was the eldest son of Kim Jong-il, the former leader of North Korea.\n",
- "\n",
- "He tried to enter Japan using a fake passport in May 2001. This was to visit Disneyland. This caused his father to not approve of him. Kim Jong-nam's younger half-brother Kim Jong-un was made the heir in September 2010.\n",
- "\n",
- "In June 2010, Kim Jong-nam gave a brief interview to the Associated Press in Macau. He told the reporter that he had \"no plans\" to defect to Europe. The press had recently said this. Kim Jong-nam lived in an apartment on the southern tip of Macau's Coloane Island until 2007. An anonymous South Korean official reported in October 2010 that Jong-nam had not lived in Macau for \"months\", and now goes between China and \"another country.\"\n",
- "\n",
- "When his father died, Kim Jong-nam did not attend the funeral. This was to avoid rumours on the succession.\n",
- "\n",
- "He was assassinated in Malaysia on February 13, 2017, which is believed to be ordered by his half-brother Kim Jong-un.\n",
- "\n",
- "Personal life\n",
- "The South Korean newspaper The Chosun Ilbo said that Kim Jong-nam has two wives, at least one mistress, and several children. His first wife Shin Jong-hui (born c. 1980) and their son Kum-sol (born c. 1996) live at a home called Dragon Villa on the northern outskirts of Beijing. His second wife Lee Hye-kyong (born c. 1970), their son Han-sol (born c. 1995) and their daughter Sol-hui (born c. 1998) live in an apartment building in Macau. Jong-nam's mistress, former Air Koryo flight attendant So Yong-la (born c. 1980), also lives in Macau. \n",
- "\n",
- "Jong-nam is often given attention by the media for his gambling and extravagant spending.\n",
- "\n",
- "References\n",
- "\n",
- "1971 births\n",
- "2017 deaths\n",
- "Assassinated people\n",
- "North Korean politicians\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "{'Aggregate': {'Article': [{'meta': {'count': 25000}}]}}"
- ]
- },
- "execution_count": 118,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"# Test our insert has worked by checking one object\n",
"print(client.data_object.get()['objects'][0]['properties']['title'])\n",
@@ -928,7 +559,7 @@
},
{
"cell_type": "code",
- "execution_count": 119,
+ "execution_count": null,
"id": "5acd5437",
"metadata": {},
"outputs": [],
@@ -954,37 +585,10 @@
},
{
"cell_type": "code",
- "execution_count": 120,
+ "execution_count": null,
"id": "15def653",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "1. Museum of Modern Art (Score: 0.938)\n",
- "2. Western Europe (Score: 0.934)\n",
- "3. Renaissance art (Score: 0.932)\n",
- "4. Pop art (Score: 0.93)\n",
- "5. Northern Europe (Score: 0.927)\n",
- "6. Hellenistic art (Score: 0.926)\n",
- "7. Modernist literature (Score: 0.924)\n",
- "8. Art film (Score: 0.922)\n",
- "9. Central Europe (Score: 0.921)\n",
- "10. Art (Score: 0.921)\n",
- "11. European (Score: 0.921)\n",
- "12. Byzantine art (Score: 0.92)\n",
- "13. Postmodernism (Score: 0.92)\n",
- "14. Eastern Europe (Score: 0.92)\n",
- "15. Cubism (Score: 0.92)\n",
- "16. Europe (Score: 0.919)\n",
- "17. Impressionism (Score: 0.919)\n",
- "18. Bauhaus (Score: 0.919)\n",
- "19. Surrealism (Score: 0.919)\n",
- "20. Expressionism (Score: 0.919)\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"query_result = query_weaviate('modern art in Europe','Article')\n",
"counter = 0\n",
@@ -995,37 +599,10 @@
},
{
"cell_type": "code",
- "execution_count": 85,
+ "execution_count": null,
"id": "93c4a696",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "1. Historic Scotland (Score: 0.946)\n",
- "2. First War of Scottish Independence (Score: 0.946)\n",
- "3. Battle of Bannockburn (Score: 0.946)\n",
- "4. Wars of Scottish Independence (Score: 0.944)\n",
- "5. Second War of Scottish Independence (Score: 0.939)\n",
- "6. List of Scottish monarchs (Score: 0.937)\n",
- "7. Scottish Borders (Score: 0.932)\n",
- "8. Braveheart (Score: 0.929)\n",
- "9. John of Scotland (Score: 0.929)\n",
- "10. Guardians of Scotland (Score: 0.926)\n",
- "11. Holyrood Abbey (Score: 0.925)\n",
- "12. Scottish (Score: 0.925)\n",
- "13. Scots (Score: 0.925)\n",
- "14. Robert I of Scotland (Score: 0.924)\n",
- "15. Scottish people (Score: 0.924)\n",
- "16. Alexander I of Scotland (Score: 0.924)\n",
- "17. Edinburgh Castle (Score: 0.924)\n",
- "18. Robert Burns (Score: 0.923)\n",
- "19. Battle of Bosworth Field (Score: 0.922)\n",
- "20. David II of Scotland (Score: 0.922)\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"query_result = query_weaviate('Famous battles in Scottish history','Article')\n",
"counter = 0\n",
@@ -1063,7 +640,7 @@
},
{
"cell_type": "code",
- "execution_count": 99,
+ "execution_count": null,
"id": "76d697e9",
"metadata": {
"ExecuteTime": {
@@ -1078,7 +655,7 @@
},
{
"cell_type": "code",
- "execution_count": 100,
+ "execution_count": null,
"id": "1deeb539",
"metadata": {
"ExecuteTime": {
@@ -1086,18 +663,7 @@
"start_time": "2023-01-18T09:29:19.727897Z"
}
},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "CollectionsResponse(collections=[])"
- ]
- },
- "execution_count": 100,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"qdrant.get_collections()"
]
@@ -1116,7 +682,7 @@
},
{
"cell_type": "code",
- "execution_count": 101,
+ "execution_count": null,
"id": "1a84ee1d",
"metadata": {
"ExecuteTime": {
@@ -1131,7 +697,7 @@
},
{
"cell_type": "code",
- "execution_count": 102,
+ "execution_count": null,
"id": "00876f92",
"metadata": {
"ExecuteTime": {