From bd91363afac6e85e7c5d32a3ce9b6b63b7c2d469 Mon Sep 17 00:00:00 2001
From: Eli <43382407+eli64s@users.noreply.github.com>
Date: Tue, 11 Jul 2023 19:08:37 -0500
Subject: [PATCH] Enhancements and Refactoring of Python Code Extraction
Methods (#467)
* Refactor and enhance code extraction methods.
* Use f-strings to print filepaths, improving readability.
---
examples/Code_search.ipynb | 190 +++++++++++++++++++++----------------
1 file changed, 108 insertions(+), 82 deletions(-)
diff --git a/examples/Code_search.ipynb b/examples/Code_search.ipynb
index 90e3936..02779ee 100644
--- a/examples/Code_search.ipynb
+++ b/examples/Code_search.ipynb
@@ -7,86 +7,110 @@
"source": [
"## Code search\n",
"\n",
- "We index our own [openai-python code repository](https://github.com/openai/openai-python), and show how it can be searched. We implement a simple version of file parsing and extracting of functions from python files."
+ "We index our own [openai-python code repository](https://github.com/openai/openai-python), and show how it can be searched. We implement a simple version of file parsing and extracting of functions from python files.\n"
]
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "Total number of py files: 51\n",
- "Total number of functions extracted: 97\n"
+ "Total number of .py files: 57\n",
+ "Total number of functions extracted: 118\n"
]
}
],
"source": [
- "import os\n",
- "from glob import glob\n",
"import pandas as pd\n",
+ "from pathlib import Path\n",
+ "\n",
+ "DEF_PREFIXES = ['def ', 'async def ']\n",
+ "NEWLINE = '\\n'\n",
+ "\n",
"\n",
"def get_function_name(code):\n",
" \"\"\"\n",
- " Extract function name from a line beginning with \"def \"\n",
+ " Extract function name from a line beginning with 'def' or 'async def'.\n",
" \"\"\"\n",
- " assert code.startswith(\"def \")\n",
- " return code[len(\"def \"): code.index(\"(\")]\n",
+ " for prefix in DEF_PREFIXES:\n",
+ " if code.startswith(prefix):\n",
+ " return code[len(prefix): code.index('(')]\n",
"\n",
- "def get_until_no_space(all_lines, i) -> str:\n",
+ "\n",
+ "def get_until_no_space(all_lines, i):\n",
" \"\"\"\n",
" Get all lines until a line outside the function definition is found.\n",
" \"\"\"\n",
" ret = [all_lines[i]]\n",
- " for j in range(i + 1, i + 10000):\n",
- " if j < len(all_lines):\n",
- " if len(all_lines[j]) == 0 or all_lines[j][0] in [\" \", \"\\t\", \")\"]:\n",
- " ret.append(all_lines[j])\n",
- " else:\n",
- " break\n",
- " return \"\\n\".join(ret)\n",
+ " for j in range(i + 1, len(all_lines)):\n",
+ " if len(all_lines[j]) == 0 or all_lines[j][0] in [' ', '\\t', ')']:\n",
+ " ret.append(all_lines[j])\n",
+ " else:\n",
+ " break\n",
+ " return NEWLINE.join(ret)\n",
+ "\n",
"\n",
"def get_functions(filepath):\n",
" \"\"\"\n",
" Get all functions in a Python file.\n",
" \"\"\"\n",
- " whole_code = open(filepath).read().replace(\"\\r\", \"\\n\")\n",
- " all_lines = whole_code.split(\"\\n\")\n",
- " for i, l in enumerate(all_lines):\n",
- " if l.startswith(\"def \"):\n",
- " code = get_until_no_space(all_lines, i)\n",
- " function_name = get_function_name(code)\n",
- " yield {\"code\": code, \"function_name\": function_name, \"filepath\": filepath}\n",
+ " with open(filepath, 'r') as file:\n",
+ " all_lines = file.read().replace('\\r', NEWLINE).split(NEWLINE)\n",
+ " for i, l in enumerate(all_lines):\n",
+ " for prefix in DEF_PREFIXES:\n",
+ " if l.startswith(prefix):\n",
+ " code = get_until_no_space(all_lines, i)\n",
+ " function_name = get_function_name(code)\n",
+ " yield {\n",
+ " 'code': code,\n",
+ " 'function_name': function_name,\n",
+ " 'filepath': filepath,\n",
+ " }\n",
+ " break\n",
"\n",
"\n",
- "# get user root directory\n",
- "root_dir = os.path.expanduser(\"~\")\n",
- "# note: for this code to work, the openai-python repo must be downloaded and placed in your root directory\n",
+ "def extract_functions_from_repo(code_root):\n",
+ " \"\"\"\n",
+ " Extract all .py functions from the repository.\n",
+ " \"\"\"\n",
+ " code_files = list(code_root.glob('**/*.py'))\n",
"\n",
- "# path to code repository directory\n",
- "code_root = root_dir + \"/openai-python\"\n",
+ " num_files = len(code_files)\n",
+ " print(f'Total number of .py files: {num_files}')\n",
"\n",
- "code_files = [y for x in os.walk(code_root) for y in glob(os.path.join(x[0], '*.py'))]\n",
- "print(\"Total number of py files:\", len(code_files))\n",
+ " if num_files == 0:\n",
+ " print('Verify openai-python repo exists and code_root is set correctly.')\n",
+ " return None\n",
"\n",
- "if len(code_files) == 0:\n",
- " print(\"Double check that you have downloaded the openai-python repo and set the code_root variable correctly.\")\n",
+ " all_funcs = [\n",
+ " func\n",
+ " for code_file in code_files\n",
+ " for func in get_functions(str(code_file))\n",
+ " ]\n",
"\n",
- "all_funcs = []\n",
- "for code_file in code_files:\n",
- " funcs = list(get_functions(code_file))\n",
- " for func in funcs:\n",
- " all_funcs.append(func)\n",
+ " num_funcs = len(all_funcs)\n",
+ " print(f'Total number of functions extracted: {num_funcs}')\n",
"\n",
- "print(\"Total number of functions extracted:\", len(all_funcs))"
+ " return all_funcs\n",
+ "\n",
+ "\n",
+ "# Set user root directory to the 'openai-python' repository\n",
+ "root_dir = Path.home()\n",
+ "\n",
+ "# Assumes the 'openai-python' repository exists in the user's root directory\n",
+ "code_root = root_dir / 'openai-python'\n",
+ "\n",
+ "# Extract all functions from the repository\n",
+ "all_funcs = extract_functions_from_repo(code_root)"
]
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 11,
"metadata": {},
"outputs": [
{
@@ -121,36 +145,36 @@
"
0 | \n",
" def _console_log_level():\\n if openai.log i... | \n",
" _console_log_level | \n",
- " /openai/util.py | \n",
- " [0.03389773145318031, -0.004390408284962177, 0... | \n",
+ " openai/util.py | \n",
+ " [0.033906757831573486, -0.00418944051489234, 0... | \n",
" \n",
" \n",
" 1 | \n",
" def log_debug(message, **params):\\n msg = l... | \n",
" log_debug | \n",
- " /openai/util.py | \n",
- " [-0.004034275189042091, 0.004895383026450872, ... | \n",
+ " openai/util.py | \n",
+ " [-0.004059609025716782, 0.004895503632724285, ... | \n",
"
\n",
" \n",
" 2 | \n",
" def log_info(message, **params):\\n msg = lo... | \n",
" log_info | \n",
- " /openai/util.py | \n",
- " [0.004882764536887407, 0.0033515947870910168, ... | \n",
+ " openai/util.py | \n",
+ " [0.0048639848828315735, 0.0033139237202703953,... | \n",
"
\n",
" \n",
" 3 | \n",
" def log_warn(message, **params):\\n msg = lo... | \n",
" log_warn | \n",
- " /openai/util.py | \n",
- " [0.002535992069169879, -0.010829543694853783, ... | \n",
+ " openai/util.py | \n",
+ " [0.0024026145692914724, -0.010721310041844845,... | \n",
"
\n",
" \n",
" 4 | \n",
" def logfmt(props):\\n def fmt(key, val):\\n ... | \n",
" logfmt | \n",
- " /openai/util.py | \n",
- " [0.016732551157474518, 0.017367802560329437, 0... | \n",
+ " openai/util.py | \n",
+ " [0.01664826273918152, 0.01730910874903202, 0.0... | \n",
"
\n",
" \n",
"\n",
@@ -164,15 +188,15 @@
"3 def log_warn(message, **params):\\n msg = lo... log_warn \n",
"4 def logfmt(props):\\n def fmt(key, val):\\n ... logfmt \n",
"\n",
- " filepath code_embedding \n",
- "0 /openai/util.py [0.03389773145318031, -0.004390408284962177, 0... \n",
- "1 /openai/util.py [-0.004034275189042091, 0.004895383026450872, ... \n",
- "2 /openai/util.py [0.004882764536887407, 0.0033515947870910168, ... \n",
- "3 /openai/util.py [0.002535992069169879, -0.010829543694853783, ... \n",
- "4 /openai/util.py [0.016732551157474518, 0.017367802560329437, 0... "
+ " filepath code_embedding \n",
+ "0 openai/util.py [0.033906757831573486, -0.00418944051489234, 0... \n",
+ "1 openai/util.py [-0.004059609025716782, 0.004895503632724285, ... \n",
+ "2 openai/util.py [0.0048639848828315735, 0.0033139237202703953,... \n",
+ "3 openai/util.py [0.0024026145692914724, -0.010721310041844845,... \n",
+ "4 openai/util.py [0.01664826273918152, 0.01730910874903202, 0.0... "
]
},
- "execution_count": 2,
+ "execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
@@ -182,41 +206,41 @@
"\n",
"df = pd.DataFrame(all_funcs)\n",
"df['code_embedding'] = df['code'].apply(lambda x: get_embedding(x, engine='text-embedding-ada-002'))\n",
- "df['filepath'] = df['filepath'].apply(lambda x: x.replace(code_root, \"\"))\n",
+ "df['filepath'] = df['filepath'].map(lambda x: Path(x).relative_to(code_root))\n",
"df.to_csv(\"data/code_search_openai-python.csv\", index=False)\n",
"df.head()"
]
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "/openai/tests/test_endpoints.py:test_completions score=0.826\n",
+ "openai/tests/test_endpoints.py:test_completions score=0.826\n",
"def test_completions():\n",
" result = openai.Completion.create(prompt=\"This was a test\", n=5, engine=\"ada\")\n",
" assert len(result.choices) == 5\n",
"\n",
"\n",
"----------------------------------------------------------------------\n",
- "/openai/tests/test_endpoints.py:test_completions_model score=0.811\n",
- "def test_completions_model():\n",
- " result = openai.Completion.create(prompt=\"This was a test\", n=5, model=\"ada\")\n",
+ "openai/tests/asyncio/test_endpoints.py:test_completions score=0.824\n",
+ "async def test_completions():\n",
+ " result = await openai.Completion.acreate(\n",
+ " prompt=\"This was a test\", n=5, engine=\"ada\"\n",
+ " )\n",
" assert len(result.choices) == 5\n",
- " assert result.model.startswith(\"ada\")\n",
"\n",
"\n",
"----------------------------------------------------------------------\n",
- "/openai/tests/test_endpoints.py:test_completions_multiple_prompts score=0.808\n",
- "def test_completions_multiple_prompts():\n",
- " result = openai.Completion.create(\n",
- " prompt=[\"This was a test\", \"This was another test\"], n=5, engine=\"ada\"\n",
- " )\n",
- " assert len(result.choices) == 10\n",
+ "openai/tests/asyncio/test_endpoints.py:test_completions_model score=0.82\n",
+ "async def test_completions_model():\n",
+ " result = await openai.Completion.acreate(prompt=\"This was a test\", n=5, model=\"ada\")\n",
+ " assert len(result.choices) == 5\n",
+ " assert result.model.startswith(\"ada\")\n",
"\n",
"\n",
"----------------------------------------------------------------------\n"
@@ -231,11 +255,13 @@
" df['similarities'] = df.code_embedding.apply(lambda x: cosine_similarity(x, embedding))\n",
"\n",
" res = df.sort_values('similarities', ascending=False).head(n)\n",
+ "\n",
" if pprint:\n",
" for r in res.iterrows():\n",
- " print(r[1].filepath+\":\"+r[1].function_name + \" score=\" + str(round(r[1].similarities, 3)))\n",
+ " print(f\"{r[1].filepath}:{r[1].function_name} score={round(r[1].similarities, 3)}\")\n",
" print(\"\\n\".join(r[1].code.split(\"\\n\")[:n_lines]))\n",
- " print('-'*70)\n",
+ " print('-' * 70)\n",
+ "\n",
" return res\n",
"\n",
"res = search_functions(df, 'Completions API tests', n=3)"
@@ -243,14 +269,14 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "/openai/validators.py:format_inferrer_validator score=0.751\n",
+ "openai/validators.py:format_inferrer_validator score=0.751\n",
"def format_inferrer_validator(df):\n",
" \"\"\"\n",
" This validator will infer the likely fine-tuning format of the data, and display it to the user if it is classification.\n",
@@ -259,7 +285,7 @@
" ft_type = infer_task_type(df)\n",
" immediate_msg = None\n",
"----------------------------------------------------------------------\n",
- "/openai/validators.py:get_validators score=0.748\n",
+ "openai/validators.py:get_validators score=0.748\n",
"def get_validators():\n",
" return [\n",
" num_examples_validator,\n",
@@ -268,7 +294,7 @@
" additional_column_validator,\n",
" non_empty_field_validator,\n",
"----------------------------------------------------------------------\n",
- "/openai/validators.py:infer_task_type score=0.738\n",
+ "openai/validators.py:infer_task_type score=0.739\n",
"def infer_task_type(df):\n",
" \"\"\"\n",
" Infer the likely fine-tuning task type from the data\n",
@@ -286,14 +312,14 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "/openai/validators.py:get_common_xfix score=0.793\n",
+ "openai/validators.py:get_common_xfix score=0.794\n",
"def get_common_xfix(series, xfix=\"suffix\"):\n",
" \"\"\"\n",
" Finds the longest common suffix or prefix of all the values in a series\n",
@@ -305,7 +331,7 @@
" if xfix == \"suffix\"\n",
" else series.str[: len(common_xfix) + 1]\n",
"----------------------------------------------------------------------\n",
- "/openai/validators.py:common_completion_suffix_validator score=0.778\n",
+ "openai/validators.py:common_completion_suffix_validator score=0.778\n",
"def common_completion_suffix_validator(df):\n",
" \"\"\"\n",
" This validator will suggest to add a common suffix to the completion if one doesn't already exist in case of classification or conditional generation.\n",
@@ -326,14 +352,14 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "/openai/cli.py:tools_register score=0.773\n",
+ "openai/cli.py:tools_register score=0.78\n",
"def tools_register(parser):\n",
" subparsers = parser.add_subparsers(\n",
" title=\"Tools\", help=\"Convenience client side tools\"\n",
@@ -382,7 +408,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.9.6"
+ "version": "3.9.16"
},
"orig_nbformat": 4
},