diff --git a/examples/Truncate_prompts_to_context_length.ipynb b/examples/Truncate_prompts_to_context_length.ipynb new file mode 100644 index 0000000..a560dd1 --- /dev/null +++ b/examples/Truncate_prompts_to_context_length.ipynb @@ -0,0 +1,822 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# How to count tokens with tiktoken\n", + "\n", + "[`tiktoken`](https://github.com/openai/tiktoken/blob/main/README.md) is a fast open-source tokenizer by OpenAI.\n", + "\n", + "Given a text string (e.g., `\"tiktoken is great!\"`) and an encoding (e.g., `\"gpt2\"`), a tokenizer can split the text string into a list of tokens (e.g., `[\"t\", \"ik\", \"token\", \" is\", \" great\", \"!\"]`).\n", + "\n", + "Splitting text strings into tokens is useful because models like GPT-3 see text in the form of tokens. Knowing how many tokens are in a text string can tell you (a) whether the string is too long for a text model to process and (b) how much an OpenAI API call costs (as usage is priced by token). Different models use different encodings.\n", + "\n", + "`tiktoken` supports three encodings used by OpenAI models:\n", + "\n", + "| Encoding name | OpenAI models |\n", + "|-------------------------|-----------------------------------------------------|\n", + "| `gpt2` (or `r50k_base`) | Most GPT-3 models |\n", + "| `p50k_base` | Code models, `text-davinci-002`, `text-davinci-003` |\n", + "| `cl100k_base` | `text-embedding-ada-002` |\n", + "\n", + "`p50k_base` overlaps substantially with `gpt2`, and for non-code applications, they will usually give the same tokens.\n", + "\n", + "## Tokenizer libraries and languages\n", + "\n", + "For `gpt2` encodings, tokenizers are available in many languages.\n", + "- Python: [tiktoken](https://github.com/openai/tiktoken/blob/main/README.md) (or alternatively [GPT2TokenizerFast](https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2TokenizerFast))\n", + "- JavaScript: [gpt-3-encoder](https://www.npmjs.com/package/gpt-3-encoder)\n", + "- .NET / C#: [GPT Tokenizer](https://github.com/dluc/openai-tools)\n", + "- Java: [gpt2-tokenizer-java](https://github.com/hyunwoongko/gpt2-tokenizer-java)\n", + "- PHP: [GPT-3-Encoder-PHP](https://github.com/CodeRevolutionPlugins/GPT-3-Encoder-PHP)\n", + "\n", + "(OpenAI makes no endorsements or guarantees of third-party libraries.)\n", + "\n", + "For `p50k_base` and `cl100k_base` encodings, `tiktoken` is the only tokenizer available as of January 2023.\n", + "- Python: [tiktoken](https://github.com/openai/tiktoken/blob/main/README.md)\n", + "\n", + "## How strings are typically tokenized\n", + "\n", + "In English, tokens commonly range in length from one character to one word (e.g., `\"t\"` or `\" great\"`), though in some languages tokens can be shorter than one character or longer than one word. Spaces are usually grouped with the starts of words (e.g., `\" is\"` instead of `\"is \"` or `\" \"`+`\"is\"`). You can quickly check how a string is tokenized at the [OpenAI Tokenizer](https://beta.openai.com/tokenizer)." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 0. Install `tiktoken`\n", + "\n", + "In your terminal, install `tiktoken` with `pip`:\n", + "\n", + "```bash\n", + "pip install tiktoken\n", + "```" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Import `tiktoken`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from typing import Iterable, Sequence, Optional\n", + "\n", + "import tiktoken\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Load an encoding\n", + "\n", + "Use `tiktoken.get_encoding()` to load an encoding by name.\n", + "\n", + "The first time this runs, it will require an internet connection to download. Later runs won't need an internet connection." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "encoding = tiktoken.get_encoding(\"cl100k_base\")\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Turn text into tokens with `encoding.encode()`\n", + "\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `.encode()` method converts a text string into a list of token integers." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "encoding.encode(\"tiktoken is great!\")\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Count tokens by counting the length of the list returned by `.encode()`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def num_tokens_from_string(string: str, encoding_name: str) -> int:\n", + " \"\"\"Returns the number of tokens in a text string.\"\"\"\n", + " encoding = tiktoken.get_encoding(encoding_name)\n", + " num_tokens = len(encoding.encode(string))\n", + " return num_tokens\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "num_tokens_from_string(\"tiktoken is great!\", \"gpt2\")\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. Turn tokens into text with `encoding.decode()`" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`.decode()` converts a list of token integers to a string." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "encoding.decode([83, 1134, 30001, 318, 1049, 0])\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Warning: although `.decode()` can be applied to single tokens, beware that it can be lossy for tokens that aren't on utf-8 boundaries." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For single tokens, `.decode_single_token_bytes()` safely converts a single integer token to the bytes it represents." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "[encoding.decode_single_token_bytes(token) for token in [83, 1134, 30001, 318, 1049, 0]]\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "(The `b` in front of the strings indicates that the strings are byte strings.)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5. Comparing encodings\n", + "\n", + "Different encodings can vary in how they split words, group spaces, and handle non-English characters. Using the methods above, we can compare different encodings on a few example strings." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [ + "def compare_encodings(example_string: str) -> None:\n", + " \"\"\"Prints a comparison of three string encodings.\"\"\"\n", + " # print the example string\n", + " print(f'\\nExample string: \"{example_string}\"')\n", + " # for each encoding, print the # of tokens, the token integers, and the token bytes\n", + " for encoding_name in [\"gpt2\", \"p50k_base\", \"cl100k_base\"]:\n", + " encoding = tiktoken.get_encoding(encoding_name)\n", + " token_integers = encoding.encode(example_string)\n", + " num_tokens = len(token_integers)\n", + " token_bytes = [encoding.decode_single_token_bytes(token) for token in token_integers]\n", + " print()\n", + " print(f\"{encoding_name}: {num_tokens} tokens\")\n", + " print(f\"token integers: {token_integers}\")\n", + " print(f\"token bytes: {token_bytes}\")#%% md\n", + "# How to count tokens with tiktoken\n", + "\n", + "[`tiktoken`](https://github.com/openai/tiktoken/blob/main/README.md) is a fast open-source tokenizer by OpenAI.\n", + "\n", + "Given a text string (e.g., `\"tiktoken is great!\"`) and an encoding (e.g., `\"gpt2\"`), a tokenizer can split the text string into a list of tokens (e.g., `[\"t\", \"ik\", \"token\", \" is\", \" great\", \"!\"]`).\n", + "\n", + "Splitting text strings into tokens is useful because models like GPT-3 see text in the form of tokens. Knowing how many tokens are in a text string can tell you (a) whether the string is too long for a text model to process and (b) how much an OpenAI API call costs (as usage is priced by token). Different models use different encodings.\n", + "\n", + "`tiktoken` supports three encodings used by OpenAI models:\n", + "\n", + "| Encoding name | OpenAI models |\n", + "|-------------------------|-----------------------------------------------------|\n", + "| `gpt2` (or `r50k_base`) | Most GPT-3 models |\n", + "| `p50k_base` | Code models, `text-davinci-002`, `text-davinci-003` |\n", + "| `cl100k_base` | `text-embedding-ada-002` |\n", + "\n", + "`p50k_base` overlaps substantially with `gpt2`, and for non-code applications, they will usually give the same tokens.\n", + "\n", + "## Tokenizer libraries and languages\n", + "\n", + "For `gpt2` encodings, tokenizers are available in many languages.\n", + "- Python: [tiktoken](https://github.com/openai/tiktoken/blob/main/README.md) (or alternatively [GPT2TokenizerFast](https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2TokenizerFast))\n", + "- JavaScript: [gpt-3-encoder](https://www.npmjs.com/package/gpt-3-encoder)\n", + "- .NET / C#: [GPT Tokenizer](https://github.com/dluc/openai-tools)\n", + "- Java: [gpt2-tokenizer-java](https://github.com/hyunwoongko/gpt2-tokenizer-java)\n", + "- PHP: [GPT-3-Encoder-PHP](https://github.com/CodeRevolutionPlugins/GPT-3-Encoder-PHP)\n", + "\n", + "(OpenAI makes no endorsements or guarantees of third-party libraries.)\n", + "\n", + "For `p50k_base` and `cl100k_base` encodings, `tiktoken` is the only tokenizer available as of January 2023.\n", + "- Python: [tiktoken](https://github.com/openai/tiktoken/blob/main/README.md)\n", + "\n", + "## How strings are typically tokenized\n", + "\n", + "In English, tokens commonly range in length from one character to one word (e.g., `\"t\"` or `\" great\"`), though in some languages tokens can be shorter than one character or longer than one word. Spaces are usually grouped with the starts of words (e.g., `\" is\"` instead of `\"is \"` or `\" \"`+`\"is\"`). You can quickly check how a string is tokenized at the [OpenAI Tokenizer](https://beta.openai.com/tokenizer)." + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "## 0. Install `tiktoken`\n", + "\n", + "In your terminal, install `tiktoken` with `pip`:\n", + "\n", + "```bash\n", + "pip install tiktoken\n", + "```" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "## 1. Import `tiktoken`" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [ + "from typing import Iterable, Sequence, Optional\n", + "\n", + "import tiktoken\n" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "## 2. Load an encoding\n", + "\n", + "Use `tiktoken.get_encoding()` to load an encoding by name.\n", + "\n", + "The first time this runs, it will require an internet connection to download. Later runs won't need an internet connection." + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [ + "encoding = tiktoken.get_encoding(\"cl100k_base\")\n" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "## 3. Turn text into tokens with `encoding.encode()`\n", + "\n" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "The `.encode()` method converts a text string into a list of token integers." + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [ + "encoding.encode(\"tiktoken is great!\")\n" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "Count tokens by counting the length of the list returned by `.encode()`." + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [ + "def num_tokens_from_string(string: str, encoding_name: str) -> int:\n", + " \"\"\"Returns the number of tokens in a text string.\"\"\"\n", + " encoding = tiktoken.get_encoding(encoding_name)\n", + " num_tokens = len(encoding.encode(string))\n", + " return num_tokens\n" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [ + "num_tokens_from_string(\"tiktoken is great!\", \"gpt2\")\n" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "## 4. Turn tokens into text with `encoding.decode()`" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "`.decode()` converts a list of token integers to a string." + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [ + "encoding.decode([83, 1134, 30001, 318, 1049, 0])\n" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "Warning: although `.decode()` can be applied to single tokens, beware that it can be lossy for tokens that aren't on utf-8 boundaries." + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "For single tokens, `.decode_single_token_bytes()` safely converts a single integer token to the bytes it represents." + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [ + "[encoding.decode_single_token_bytes(token) for token in [83, 1134, 30001, 318, 1049, 0]]\n" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "(The `b` in front of the strings indicates that the strings are byte strings.)" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "## 5. Comparing encodings\n", + "\n", + "Different encodings can vary in how they split words, group spaces, and handle non-English characters. Using the methods above, we can compare different encodings on a few example strings." + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [ + "def compare_encodings(example_string: str) -> None:\n", + " \"\"\"Prints a comparison of three string encodings.\"\"\"\n", + " # print the example string\n", + " print(f'\\nExample string: \"{example_string}\"')\n", + " # for each encoding, print the # of tokens, the token integers, and the token bytes\n", + " for encoding_name in [\"gpt2\", \"p50k_base\", \"cl100k_base\"]:\n", + " encoding = tiktoken.get_encoding(encoding_name)\n", + " token_integers = encoding.encode(example_string)\n", + " num_tokens = len(token_integers)\n", + " token_bytes = [encoding.decode_single_token_bytes(token) for token in token_integers]\n", + " print()\n", + " print(f\"{encoding_name}: {num_tokens} tokens\")\n", + " print(f\"token integers: {token_integers}\")\n", + " print(f\"token bytes: {token_bytes}\")\n" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [ + "compare_encodings(\"antidisestablishmentarianism\")\n" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [ + "compare_encodings(\"2 + 2 = 4\")\n" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [ + "compare_encodings(\"お誕生日おめでとう\")\n" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [ + "long_prompt = str(list(range(3000)))\n", + "num_tokens_from_string(long_prompt, 'cl100k_base')" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [ + "import openai\n", + "EMBEDDING_MODEL = 'text-embedding-ada-002'\n", + "EMBEDDING_CTX_LENGTH = 8191\n", + "openai.Embedding.create(input=long_prompt, model=EMBEDDING_MODEL)\n", + "\n" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [ + "def truncate_string_tokens(text: str, encoding_name: str = 'cl100k_base', max_tokens: int = EMBEDDING_CTX_LENGTH) -> list[int]:\n", + " \"\"\"Truncate a string to have `max_tokens` according to the given encoding.\"\"\"\n", + " encoding = tiktoken.get_encoding(encoding_name)\n", + " return encoding.encode(text)[:max_tokens]\n" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [ + "from itertools import islice\n", + "\n", + "# From: https://docs.python.org/3/library/itertools.html#itertools-recipes\n", + "def batched(iterable, n):\n", + " \"\"\"Batch data into tuples of length n. The last batch may be shorter.\"\"\"\n", + " # batched('ABCDEFG', 3) --> ABC DEF G\n", + " if n < 1:\n", + " raise ValueError('n must be at least one')\n", + " it = iter(iterable)\n", + " while (batch := tuple(islice(it, n))):\n", + " yield batch\n", + "\n", + "\n", + "def chunked_tokens(text: str, encoding_name: str = 'cl100k_base', chunk_ctx_length: int = EMBEDDING_CTX_LENGTH):\n", + " encoding = tiktoken.get_encoding(encoding_name)\n", + " tokens = encoding.encode(text)\n", + " chunks_iterator = batched(tokens, chunk_ctx_length)\n", + " yield from chunks_iterator\n" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [ + "import numpy as np\n", + "from tenacity import retry, wait_random_exponential, stop_after_attempt\n", + "\n", + "\n", + "@retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(6))\n", + "def get_embedding(tokens: Sequence[int], model=EMBEDDING_MODEL) -> list[float]:\n", + " return openai.Embedding.create(input=tokens, model=model)[\"data\"][0][\"embedding\"]\n", + "\n", + "\n", + "def len_safe_get_embedding(text: str, model=EMBEDDING_MODEL, max_tokens: int = EMBEDDING_CTX_LENGTH, encoding_name: str = 'cl100k_base', reduction: Optional[str]='average'):\n", + " chunk_embeddings = []\n", + " for chunk in chunked_tokens(text, encoding_name=encoding_name, chunk_ctx_length=max_tokens):\n", + " chunk_embeddings.append(get_embedding(chunk, model=model))\n", + "\n", + " if reduction is None:\n", + " return chunk_embeddings\n", + " elif reduction == 'average':\n", + " return np.mean(chunk_embeddings, weights=[len(c) for c in chunk_embeddings])\n", + " else:\n", + " raise NotI\n", + "\n", + "\n", + "\n" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "compare_encodings(\"antidisestablishmentarianism\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "compare_encodings(\"2 + 2 = 4\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "compare_encodings(\"お誕生日おめでとう\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [ + "long_prompt = str(list(range(3000)))\n", + "num_tokens_from_string(long_prompt, 'cl100k_base')" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [ + "import openai\n", + "\n", + "EMBEDDING_MODEL = 'text-embedding-ada-002'\n", + "EMBEDDING_CTX_LENGTH = 8191\n", + "\n", + "openai.Embedding.create(input=long_prompt, model=EMBEDDING_MODEL)\n", + "\n" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [ + "def truncate_string_tokens(text: str, encoding_name: str = 'cl100k_base', max_tokens: int = EMBEDDING_CTX_LENGTH) -> list[int]:\n", + " \"\"\"Truncate a string to have `max_tokens` according to the given encoding.\"\"\"\n", + " encoding = tiktoken.get_encoding(encoding_name)\n", + " return encoding.encode(text)[:max_tokens]\n" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [ + "from itertools import islice\n", + "\n", + "# From: https://docs.python.org/3/library/itertools.html#itertools-recipes\n", + "def batched(iterable, n):\n", + " \"\"\"Batch data into tuples of length n. The last batch may be shorter.\"\"\"\n", + " # batched('ABCDEFG', 3) --> ABC DEF G\n", + " if n < 1:\n", + " raise ValueError('n must be at least one')\n", + " it = iter(iterable)\n", + " while (batch := tuple(islice(it, n))):\n", + " yield batch\n", + "\n", + "\n", + "def chunked_tokens(text: str, encoding_name: str = 'cl100k_base', chunk_ctx_length: int = EMBEDDING_CTX_LENGTH):\n", + " encoding = tiktoken.get_encoding(encoding_name)\n", + " tokens = encoding.encode(text)\n", + " chunks_iterator = batched(tokens, chunk_ctx_length)\n", + " yield from chunks_iterator\n" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [ + "import numpy as np\n", + "from tenacity import retry, wait_random_exponential, stop_after_attempt\n", + "\n", + "\n", + "@retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(6))\n", + "def get_embedding(tokens: Sequence[int], model=EMBEDDING_MODEL) -> list[float]:\n", + " return openai.Embedding.create(input=tokens, model=model)[\"data\"][0][\"embedding\"]\n", + "\n", + "\n", + "def len_safe_get_embedding(text: str, model=EMBEDDING_MODEL, max_tokens: int = EMBEDDING_CTX_LENGTH, encoding_name: str = 'cl100k_base', reduction: Optional[str] = None):\n", + " chunk_embeddings = []\n", + " for chunk in chunked_tokens(text, encoding_name=encoding_name, chunk_ctx_length=max_tokens):\n", + " chunk_embeddings.append(get_embedding(chunk, model=model))\n", + "\n", + " if reduction is None:\n", + " return chunk_embeddings\n", + " elif reduction == 'average':\n", + " return np.average(chunk_embeddings, axis=0, weights=[len(c) for c in chunk_embeddings]).tolist()\n", + " else:\n", + " raise ValueError(f'reduction {reduction} not valid.')\n", + "\n", + "\n", + "\n" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [], + "metadata": { + "collapsed": false + } + } + ], + "metadata": { + "kernelspec": { + "display_name": "openai", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.9" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "365536dcbde60510dc9073d6b991cd35db2d9bac356a11f5b64279a5e6708b97" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}