mirror of
https://github.com/james-m-jordan/openai-cookbook.git
synced 2025-05-09 19:32:38 +00:00
Update some cookbook titles (#795)
This commit is contained in:
parent
ccab1feb18
commit
dc6ca0df6b
@ -5,7 +5,7 @@
|
|||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"## Clustering\n",
|
"## K-means Clustering in Python using OpenAI\n",
|
||||||
"\n",
|
"\n",
|
||||||
"We use a simple k-means algorithm to demonstrate how clustering can be done. Clustering can help discover valuable, hidden groupings within the data. The dataset is created in the [Get_embeddings_from_dataset Notebook](Get_embeddings_from_dataset.ipynb)."
|
"We use a simple k-means algorithm to demonstrate how clustering can be done. Clustering can help discover valuable, hidden groupings within the data. The dataset is created in the [Get_embeddings_from_dataset Notebook](Get_embeddings_from_dataset.ipynb)."
|
||||||
]
|
]
|
||||||
|
@ -5,12 +5,13 @@
|
|||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"## Code search\n",
|
"## Code search using embeddings\n",
|
||||||
"\n",
|
"\n",
|
||||||
"This notebook shows how Ada embeddings can be used to implement semantic code search. For this demonstration, we use our own [openai-python code repository](https://github.com/openai/openai-python). We implement a simple version of file parsing and extracting of functions from python files, which can be embedded, indexed, and queried."
|
"This notebook shows how Ada embeddings can be used to implement semantic code search. For this demonstration, we use our own [openai-python code repository](https://github.com/openai/openai-python). We implement a simple version of file parsing and extracting of functions from python files, which can be embedded, indexed, and queried."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
@ -98,6 +99,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
@ -132,6 +134,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
@ -242,6 +245,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
@ -1,10 +1,11 @@
|
|||||||
{
|
{
|
||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"## Get embeddings\n",
|
"## Using embeddings\n",
|
||||||
"\n",
|
"\n",
|
||||||
"This notebook contains some helpful snippets you can use to embed text with the 'text-embedding-ada-002' model via the OpenAI API."
|
"This notebook contains some helpful snippets you can use to embed text with the 'text-embedding-ada-002' model via the OpenAI API."
|
||||||
]
|
]
|
||||||
@ -35,6 +36,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
@ -14,7 +14,7 @@
|
|||||||
"deepnote_cell_type": "markdown"
|
"deepnote_cell_type": "markdown"
|
||||||
},
|
},
|
||||||
"source": [
|
"source": [
|
||||||
"# Evaluating Abstractive Summarization\n",
|
"# How to evaluate a summarization task\n",
|
||||||
"\n",
|
"\n",
|
||||||
"In this notebook we delve into the evaluation techniques for abstractive summarization tasks using a simple example. We explore traditional evaluation methods like [ROUGE](https://aclanthology.org/W04-1013/) and [BERTScore](https://arxiv.org/abs/1904.09675), in addition to showcasing a more novel approach using LLMs as evaluators.\n",
|
"In this notebook we delve into the evaluation techniques for abstractive summarization tasks using a simple example. We explore traditional evaluation methods like [ROUGE](https://aclanthology.org/W04-1013/) and [BERTScore](https://arxiv.org/abs/1904.09675), in addition to showcasing a more novel approach using LLMs as evaluators.\n",
|
||||||
"\n",
|
"\n",
|
||||||
|
@ -43,8 +43,8 @@
|
|||||||
- embeddings
|
- embeddings
|
||||||
- completions
|
- completions
|
||||||
|
|
||||||
- title: Code search
|
- title: Code search using embeddings
|
||||||
path: examples/Code_search.ipynb
|
path: examples/Code_search_using_embeddings
|
||||||
date: 2022-03-10
|
date: 2022-03-10
|
||||||
authors:
|
authors:
|
||||||
- BorisPower
|
- BorisPower
|
||||||
@ -107,8 +107,8 @@
|
|||||||
- completions
|
- completions
|
||||||
- functions
|
- functions
|
||||||
|
|
||||||
- title: Get embeddings
|
- title: Using embeddings
|
||||||
path: examples/Get_embeddings.ipynb
|
path: examples/Using_embeddings.ipynb
|
||||||
date: 2022-03-10
|
date: 2022-03-10
|
||||||
authors:
|
authors:
|
||||||
- BorisPower
|
- BorisPower
|
||||||
@ -445,7 +445,7 @@
|
|||||||
tags:
|
tags:
|
||||||
- dall-e
|
- dall-e
|
||||||
|
|
||||||
- title: Evaluating Abstractive Summarization
|
- title: How to evaluate a summarization task
|
||||||
path: examples/evaluation/How_to_eval_abstractive_summarization.ipynb
|
path: examples/evaluation/How_to_eval_abstractive_summarization.ipynb
|
||||||
date: 2023-08-16
|
date: 2023-08-16
|
||||||
authors:
|
authors:
|
||||||
|
Loading…
x
Reference in New Issue
Block a user