mirror of
https://github.com/james-m-jordan/openai-cookbook.git
synced 2025-05-09 19:32:38 +00:00
Update some cookbook titles (#795)
This commit is contained in:
parent
ccab1feb18
commit
dc6ca0df6b
@ -5,7 +5,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Clustering\n",
|
||||
"## K-means Clustering in Python using OpenAI\n",
|
||||
"\n",
|
||||
"We use a simple k-means algorithm to demonstrate how clustering can be done. Clustering can help discover valuable, hidden groupings within the data. The dataset is created in the [Get_embeddings_from_dataset Notebook](Get_embeddings_from_dataset.ipynb)."
|
||||
]
|
||||
|
@ -5,12 +5,13 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Code search\n",
|
||||
"## Code search using embeddings\n",
|
||||
"\n",
|
||||
"This notebook shows how Ada embeddings can be used to implement semantic code search. For this demonstration, we use our own [openai-python code repository](https://github.com/openai/openai-python). We implement a simple version of file parsing and extracting of functions from python files, which can be embedded, indexed, and queried."
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
@ -98,6 +99,7 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
@ -132,6 +134,7 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
@ -242,6 +245,7 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
@ -1,10 +1,11 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Get embeddings\n",
|
||||
"## Using embeddings\n",
|
||||
"\n",
|
||||
"This notebook contains some helpful snippets you can use to embed text with the 'text-embedding-ada-002' model via the OpenAI API."
|
||||
]
|
||||
@ -35,6 +36,7 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
@ -14,7 +14,7 @@
|
||||
"deepnote_cell_type": "markdown"
|
||||
},
|
||||
"source": [
|
||||
"# Evaluating Abstractive Summarization\n",
|
||||
"# How to evaluate a summarization task\n",
|
||||
"\n",
|
||||
"In this notebook we delve into the evaluation techniques for abstractive summarization tasks using a simple example. We explore traditional evaluation methods like [ROUGE](https://aclanthology.org/W04-1013/) and [BERTScore](https://arxiv.org/abs/1904.09675), in addition to showcasing a more novel approach using LLMs as evaluators.\n",
|
||||
"\n",
|
||||
|
@ -43,8 +43,8 @@
|
||||
- embeddings
|
||||
- completions
|
||||
|
||||
- title: Code search
|
||||
path: examples/Code_search.ipynb
|
||||
- title: Code search using embeddings
|
||||
path: examples/Code_search_using_embeddings
|
||||
date: 2022-03-10
|
||||
authors:
|
||||
- BorisPower
|
||||
@ -107,8 +107,8 @@
|
||||
- completions
|
||||
- functions
|
||||
|
||||
- title: Get embeddings
|
||||
path: examples/Get_embeddings.ipynb
|
||||
- title: Using embeddings
|
||||
path: examples/Using_embeddings.ipynb
|
||||
date: 2022-03-10
|
||||
authors:
|
||||
- BorisPower
|
||||
@ -445,7 +445,7 @@
|
||||
tags:
|
||||
- dall-e
|
||||
|
||||
- title: Evaluating Abstractive Summarization
|
||||
- title: How to evaluate a summarization task
|
||||
path: examples/evaluation/How_to_eval_abstractive_summarization.ipynb
|
||||
date: 2023-08-16
|
||||
authors:
|
||||
|
Loading…
x
Reference in New Issue
Block a user