mirror of
https://github.com/james-m-jordan/openai-cookbook.git
synced 2025-05-09 19:32:38 +00:00
Updated text to include Qdrant in guide
This commit is contained in:
parent
2fed004763
commit
ea8a52d00b
@ -30,6 +30,10 @@
|
||||
" - *Setup*: Here we setup the Python client for Weaviate. For more details go [here](https://weaviate.io/developers/weaviate/current/client-libraries/python.html)\n",
|
||||
" - *Index Data*: We'll create an index with __title__ search vectors in it\n",
|
||||
" - *Search Data*: We'll run a few searches to confirm it works\n",
|
||||
"- **Qdrant**\n",
|
||||
" - *Setup*: Here we setup the Python client for Qdrant. For more details go [here](https://github.com/qdrant/qdrant_client)\n",
|
||||
" - *Index Data*: We'll create a collection with vectors for __titles__ and __content__\n",
|
||||
" - *Search Data*: We'll run a few searches to confirm it works\n",
|
||||
"\n",
|
||||
"Once you've run through this notebook you should have a basic understanding of how to setup and use vector databases, and can move on to more complex use cases making use of our embeddings."
|
||||
]
|
||||
@ -46,7 +50,20 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": null,
|
||||
"id": "8d8810f9",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Here we install the clients for all vector databases\n",
|
||||
"!pip install pinecone-client\n",
|
||||
"!pip install weaviate-client\n",
|
||||
"!pip install qdrant-client"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "5be94df6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@ -1051,11 +1068,12 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9cfaed9d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Qdrant\n",
|
||||
"\n",
|
||||
"The last vector database we'll consider in **[Qdrant](https://qdrant.tech/)**. This is a high-performant vector search database written in Rust. It offers both on-premise and cloud version, but for the purposes of that example we're going to use the local deployment mode.\n",
|
||||
"The last vector database we'll consider is **[Qdrant](https://qdrant.tech/)**. This is a high-performant vector search database written in Rust. It offers both on-premise and cloud version, but for the purposes of that example we're going to use the local deployment mode.\n",
|
||||
"\n",
|
||||
"Setting everything up will require:\n",
|
||||
"- Spinning up a local instance of Qdrant\n",
|
||||
@ -1065,6 +1083,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "38774565",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Setup\n",
|
||||
@ -1077,6 +1096,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 27,
|
||||
"id": "76d697e9",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-01-18T09:28:38.928205Z",
|
||||
@ -1091,6 +1111,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 29,
|
||||
"id": "1deeb539",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-01-18T09:29:19.806639Z",
|
||||
@ -1115,6 +1136,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "bc006b6f",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Index data\n",
|
||||
@ -1127,6 +1149,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 30,
|
||||
"id": "1a84ee1d",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-01-18T09:29:22.530121Z",
|
||||
@ -1141,6 +1164,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 34,
|
||||
"id": "00876f92",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-01-18T09:31:14.413334Z",
|
||||
@ -1169,6 +1193,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 37,
|
||||
"id": "f24e76ab",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-01-18T09:36:28.597535Z",
|
||||
@ -1207,6 +1232,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 52,
|
||||
"id": "d1188a12",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-01-18T09:58:13.825886Z",
|
||||
@ -1232,6 +1258,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "06ed119b",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Search Data\n",
|
||||
@ -1242,6 +1269,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 49,
|
||||
"id": "f1bac4ef",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-01-18T09:50:35.265647Z",
|
||||
@ -1272,6 +1300,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 50,
|
||||
"id": "aa92f3d3",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-01-18T09:50:46.545145Z",
|
||||
@ -1315,6 +1344,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 51,
|
||||
"id": "7ed116b8",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-01-18T09:53:11.038910Z",
|
||||
@ -1358,6 +1388,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "55afccbf",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Thanks for following along, you're now equipped to set up your own vector databases and use embeddings to do all kinds of cool things - enjoy! For more complex use cases please continue to work through other cookbook examples in this repo."
|
||||
|
Loading…
x
Reference in New Issue
Block a user