Updated text to include Qdrant in guide

This commit is contained in:
colin-openai 2023-01-25 16:42:33 -08:00
parent 2fed004763
commit ea8a52d00b

View File

@ -30,6 +30,10 @@
" - *Setup*: Here we setup the Python client for Weaviate. For more details go [here](https://weaviate.io/developers/weaviate/current/client-libraries/python.html)\n", " - *Setup*: Here we setup the Python client for Weaviate. For more details go [here](https://weaviate.io/developers/weaviate/current/client-libraries/python.html)\n",
" - *Index Data*: We'll create an index with __title__ search vectors in it\n", " - *Index Data*: We'll create an index with __title__ search vectors in it\n",
" - *Search Data*: We'll run a few searches to confirm it works\n", " - *Search Data*: We'll run a few searches to confirm it works\n",
"- **Qdrant**\n",
" - *Setup*: Here we setup the Python client for Qdrant. For more details go [here](https://github.com/qdrant/qdrant_client)\n",
" - *Index Data*: We'll create a collection with vectors for __titles__ and __content__\n",
" - *Search Data*: We'll run a few searches to confirm it works\n",
"\n", "\n",
"Once you've run through this notebook you should have a basic understanding of how to setup and use vector databases, and can move on to more complex use cases making use of our embeddings." "Once you've run through this notebook you should have a basic understanding of how to setup and use vector databases, and can move on to more complex use cases making use of our embeddings."
] ]
@ -46,7 +50,20 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 1, "execution_count": null,
"id": "8d8810f9",
"metadata": {},
"outputs": [],
"source": [
"# Here we install the clients for all vector databases\n",
"!pip install pinecone-client\n",
"!pip install weaviate-client\n",
"!pip install qdrant-client"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5be94df6", "id": "5be94df6",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
@ -1051,11 +1068,12 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "9cfaed9d",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Qdrant\n", "## Qdrant\n",
"\n", "\n",
"The last vector database we'll consider in **[Qdrant](https://qdrant.tech/)**. This is a high-performant vector search database written in Rust. It offers both on-premise and cloud version, but for the purposes of that example we're going to use the local deployment mode.\n", "The last vector database we'll consider is **[Qdrant](https://qdrant.tech/)**. This is a high-performant vector search database written in Rust. It offers both on-premise and cloud version, but for the purposes of that example we're going to use the local deployment mode.\n",
"\n", "\n",
"Setting everything up will require:\n", "Setting everything up will require:\n",
"- Spinning up a local instance of Qdrant\n", "- Spinning up a local instance of Qdrant\n",
@ -1065,6 +1083,7 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "38774565",
"metadata": {}, "metadata": {},
"source": [ "source": [
"### Setup\n", "### Setup\n",
@ -1077,6 +1096,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 27, "execution_count": 27,
"id": "76d697e9",
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-01-18T09:28:38.928205Z", "end_time": "2023-01-18T09:28:38.928205Z",
@ -1091,6 +1111,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 29, "execution_count": 29,
"id": "1deeb539",
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-01-18T09:29:19.806639Z", "end_time": "2023-01-18T09:29:19.806639Z",
@ -1115,6 +1136,7 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "bc006b6f",
"metadata": {}, "metadata": {},
"source": [ "source": [
"### Index data\n", "### Index data\n",
@ -1127,6 +1149,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 30, "execution_count": 30,
"id": "1a84ee1d",
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-01-18T09:29:22.530121Z", "end_time": "2023-01-18T09:29:22.530121Z",
@ -1141,6 +1164,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 34, "execution_count": 34,
"id": "00876f92",
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-01-18T09:31:14.413334Z", "end_time": "2023-01-18T09:31:14.413334Z",
@ -1169,6 +1193,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 37, "execution_count": 37,
"id": "f24e76ab",
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-01-18T09:36:28.597535Z", "end_time": "2023-01-18T09:36:28.597535Z",
@ -1207,6 +1232,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 52, "execution_count": 52,
"id": "d1188a12",
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-01-18T09:58:13.825886Z", "end_time": "2023-01-18T09:58:13.825886Z",
@ -1232,6 +1258,7 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "06ed119b",
"metadata": {}, "metadata": {},
"source": [ "source": [
"### Search Data\n", "### Search Data\n",
@ -1242,6 +1269,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 49, "execution_count": 49,
"id": "f1bac4ef",
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-01-18T09:50:35.265647Z", "end_time": "2023-01-18T09:50:35.265647Z",
@ -1272,6 +1300,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 50, "execution_count": 50,
"id": "aa92f3d3",
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-01-18T09:50:46.545145Z", "end_time": "2023-01-18T09:50:46.545145Z",
@ -1315,6 +1344,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 51, "execution_count": 51,
"id": "7ed116b8",
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-01-18T09:53:11.038910Z", "end_time": "2023-01-18T09:53:11.038910Z",
@ -1358,6 +1388,7 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "55afccbf",
"metadata": {}, "metadata": {},
"source": [ "source": [
"Thanks for following along, you're now equipped to set up your own vector databases and use embeddings to do all kinds of cool things - enjoy! For more complex use cases please continue to work through other cookbook examples in this repo." "Thanks for following along, you're now equipped to set up your own vector databases and use embeddings to do all kinds of cool things - enjoy! For more complex use cases please continue to work through other cookbook examples in this repo."