{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Visualizing the embeddings in W&B\n", "\n", "We will upload the data to [Weights & Biases](http://wandb.ai) and use an [Embedding Projector](https://docs.wandb.ai/ref/app/features/panels/weave/embedding-projector) to visualize the embeddings using common dimension reduction algorithms like PCA, UMAP, and t-SNE. The dataset is created in the [Obtain_dataset Notebook](Obtain_dataset.ipynb)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1. Log the data to W&B\n", "\n", "We create a [W&B Table](https://docs.wandb.ai/guides/data-vis/log-tables) with the original data and the embeddings. Each review is a new row and the 1536 embedding floats are given their own column named `emb_{i}`." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "from sklearn.manifold import TSNE\n", "import numpy as np\n", "\n", "# Load the embeddings\n", "datafile_path = \"data/fine_food_reviews_with_embeddings_1k.csv\"\n", "df = pd.read_csv(datafile_path)\n", "\n", "# Convert to a list of lists of floats\n", "matrix = np.array(df.embedding.apply(eval).to_list())" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import wandb\n", "\n", "original_cols = df.columns[1:-1].tolist()\n", "embedding_cols = ['emb_'+str(idx) for idx in range(len(matrix[0]))]\n", "table_cols = original_cols + embedding_cols\n", "\n", "with wandb.init(project='openai_embeddings'):\n", " table = wandb.Table(columns=table_cols)\n", " for i, row in enumerate(df.to_dict(orient=\"records\")):\n", " original_data = [row[col_name] for col_name in original_cols]\n", " embedding_data = matrix[i].tolist()\n", " table.add_data(*(original_data + embedding_data))\n", " wandb.log({'openai_embedding_table': table})" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2. Render as 2D Projection" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "After navigating to the W&B run link, we click the ⚙️ icon in the top right of the Table and change \"Render As:\" to \"Combined 2D Projection\". " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Example: http://wandb.me/openai_embeddings" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.15" }, "vscode": { "interpreter": { "hash": "365536dcbde60510dc9073d6b991cd35db2d9bac356a11f5b64279a5e6708b97" } } }, "nbformat": 4, "nbformat_minor": 4 }