{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Azure audio whisper (preview) example\n", "\n", "> Note: There is a newer version of the openai library available. See https://github.com/openai/openai-python/discussions/742\n", "\n", "The example shows how to use the Azure OpenAI Whisper model to transcribe audio files." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Setup\n", "\n", "First, we install the necessary dependencies." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "! pip install \"openai>=0.28.1,<1.0.0\"\n", "! pip install python-dotenv" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, we'll import our libraries and configure the Python OpenAI SDK to work with the Azure OpenAI service." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "> Note: In this example, we configured the library to use the Azure API by setting the variables in code. For development, consider setting the environment variables instead:\n", "\n", "```\n", "OPENAI_API_BASE\n", "OPENAI_API_KEY\n", "OPENAI_API_TYPE\n", "OPENAI_API_VERSION\n", "```" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import os\n", "import dotenv\n", "import openai\n", "\n", "\n", "dotenv.load_dotenv()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "\n", "To properly access the Azure OpenAI Service, we need to create the proper resources at the [Azure Portal](https://portal.azure.com) (you can check a detailed guide on how to do this in the [Microsoft Docs](https://learn.microsoft.com/en-us/azure/cognitive-services/openai/how-to/create-resource?pivots=web-portal))\n", "\n", "Once the resource is created, the first thing we need to use is its endpoint. You can get the endpoint by looking at the *\"Keys and Endpoints\"* section under the *\"Resource Management\"* section. Having this, we will set up the SDK using this information:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "openai.api_base = os.environ[\"OPENAI_API_BASE\"]\n", "\n", "# Min API version that supports Whisper\n", "openai.api_version = \"2023-09-01-preview\"\n", "\n", "# Enter the deployment_id to use for the Whisper model\n", "deployment_id = \"\"" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Authentication\n", "\n", "The Azure OpenAI service supports multiple authentication mechanisms that include API keys and Azure credentials." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# set to True if using Azure Active Directory authentication\n", "use_azure_active_directory = False" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "\n", "#### Authentication using API key\n", "\n", "To set up the OpenAI SDK to use an *Azure API Key*, we need to set up the `api_type` to `azure` and set `api_key` to a key associated with your endpoint (you can find this key in *\"Keys and Endpoints\"* under *\"Resource Management\"* in the [Azure Portal](https://portal.azure.com))" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "if not use_azure_active_directory:\n", " openai.api_type = 'azure'\n", " openai.api_key = os.environ[\"OPENAI_API_KEY\"]" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "#### Authentication using Azure Active Directory\n", "Let's now see how we can get a key via Microsoft Active Directory Authentication." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from azure.identity import DefaultAzureCredential\n", "\n", "if use_azure_active_directory:\n", " default_credential = DefaultAzureCredential()\n", " token = default_credential.get_token(\"https://cognitiveservices.azure.com/.default\")\n", "\n", " openai.api_type = 'azure_ad'\n", " openai.api_key = token.token" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "A token is valid for a period of time, after which it will expire. To ensure a valid token is sent with every request, you can refresh an expiring token by hooking into requests.auth:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import typing\n", "import time\n", "import requests\n", "\n", "if typing.TYPE_CHECKING:\n", " from azure.core.credentials import TokenCredential\n", "\n", "class TokenRefresh(requests.auth.AuthBase):\n", "\n", " def __init__(self, credential: \"TokenCredential\", scopes: typing.List[str]) -> None:\n", " self.credential = credential\n", " self.scopes = scopes\n", " self.cached_token: typing.Optional[str] = None\n", "\n", " def __call__(self, req):\n", " if not self.cached_token or self.cached_token.expires_on - time.time() < 300:\n", " self.cached_token = self.credential.get_token(*self.scopes)\n", " req.headers[\"Authorization\"] = f\"Bearer {self.cached_token.token}\"\n", " return req\n", "\n", "if use_azure_active_directory:\n", " session = requests.Session()\n", " session.auth = TokenRefresh(default_credential, [\"https://cognitiveservices.azure.com/.default\"])\n", "\n", " openai.requestssession = session" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Audio transcription\n", "\n", "Audio transcription, or speech-to-text, is the process of converting spoken words into text. Use the `openai.Audio.transcribe` method to transcribe an audio file stream to text.\n", "\n", "You can get sample audio files from the [Azure AI Speech SDK repository at GitHub](https://github.com/Azure-Samples/cognitive-services-speech-sdk/tree/master/sampledata/audiofiles)." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "# download sample audio file\n", "import requests\n", "\n", "sample_audio_url = \"https://github.com/Azure-Samples/cognitive-services-speech-sdk/raw/master/sampledata/audiofiles/wikipediaOcelot.wav\"\n", "audio_file = requests.get(sample_audio_url)\n", "with open(\"wikipediaOcelot.wav\", \"wb\") as f:\n", " f.write(audio_file.content)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "transcription = openai.Audio.transcribe(\n", " file=open(\"wikipediaOcelot.wav\", \"rb\"),\n", " model=\"whisper-1\",\n", " deployment_id=deployment_id,\n", ")\n", "print(transcription.text)" ] } ], "metadata": { "kernelspec": { "display_name": "venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.0" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }