mirror of
https://github.com/james-m-jordan/openai-cookbook.git
synced 2025-05-09 19:32:38 +00:00
815 lines
30 KiB
Plaintext
815 lines
30 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# How to count tokens with tiktoken\n",
|
|
"\n",
|
|
"[`tiktoken`](https://github.com/openai/tiktoken/blob/main/README.md) is a fast open-source tokenizer by OpenAI.\n",
|
|
"\n",
|
|
"Given a text string (e.g., `\"tiktoken is great!\"`) and an encoding (e.g., `\"cl100k_base\"`), a tokenizer can split the text string into a list of tokens (e.g., `[\"t\", \"ik\", \"token\", \" is\", \" great\", \"!\"]`).\n",
|
|
"\n",
|
|
"Splitting text strings into tokens is useful because GPT models see text in the form of tokens. Knowing how many tokens are in a text string can tell you (a) whether the string is too long for a text model to process and (b) how much an OpenAI API call costs (as usage is priced by token).\n",
|
|
"\n",
|
|
"\n",
|
|
"## Encodings\n",
|
|
"\n",
|
|
"Encodings specify how text is converted into tokens. Different models use different encodings.\n",
|
|
"\n",
|
|
"`tiktoken` supports three encodings used by OpenAI models:\n",
|
|
"\n",
|
|
"| Encoding name | OpenAI models |\n",
|
|
"|-------------------------|-----------------------------------------------------|\n",
|
|
"| `o200k_base` | `gpt-4o`, `gpt-4o-mini` |\n",
|
|
"| `cl100k_base` | `gpt-4-turbo`, `gpt-4`, `gpt-3.5-turbo`, `text-embedding-ada-002`, `text-embedding-3-small`, `text-embedding-3-large` |\n",
|
|
"| `p50k_base` | Codex models, `text-davinci-002`, `text-davinci-003`|\n",
|
|
"| `r50k_base` (or `gpt2`) | GPT-3 models like `davinci` |\n",
|
|
"\n",
|
|
"You can retrieve the encoding for a model using `tiktoken.encoding_for_model()` as follows:\n",
|
|
"```python\n",
|
|
"encoding = tiktoken.encoding_for_model('gpt-4o-mini')\n",
|
|
"```\n",
|
|
"\n",
|
|
"Note that `p50k_base` overlaps substantially with `r50k_base`, and for non-code applications, they will usually give the same tokens.\n",
|
|
"\n",
|
|
"## Tokenizer libraries by language\n",
|
|
"\n",
|
|
"For `o200k_base`, `cl100k_base` and `p50k_base` encodings:\n",
|
|
"- Python: [tiktoken](https://github.com/openai/tiktoken/blob/main/README.md)\n",
|
|
"- .NET / C#: [SharpToken](https://github.com/dmitry-brazhenko/SharpToken), [TiktokenSharp](https://github.com/aiqinxuancai/TiktokenSharp)\n",
|
|
"- Java: [jtokkit](https://github.com/knuddelsgmbh/jtokkit)\n",
|
|
"- Golang: [tiktoken-go](https://github.com/pkoukk/tiktoken-go)\n",
|
|
"- Rust: [tiktoken-rs](https://github.com/zurawiki/tiktoken-rs)\n",
|
|
"\n",
|
|
"For `r50k_base` (`gpt2`) encodings, tokenizers are available in many languages.\n",
|
|
"- Python: [tiktoken](https://github.com/openai/tiktoken/blob/main/README.md) (or alternatively [GPT2TokenizerFast](https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2TokenizerFast))\n",
|
|
"- JavaScript: [gpt-3-encoder](https://www.npmjs.com/package/gpt-3-encoder)\n",
|
|
"- .NET / C#: [GPT Tokenizer](https://github.com/dluc/openai-tools)\n",
|
|
"- Java: [gpt2-tokenizer-java](https://github.com/hyunwoongko/gpt2-tokenizer-java)\n",
|
|
"- PHP: [GPT-3-Encoder-PHP](https://github.com/CodeRevolutionPlugins/GPT-3-Encoder-PHP)\n",
|
|
"- Golang: [tiktoken-go](https://github.com/pkoukk/tiktoken-go)\n",
|
|
"- Rust: [tiktoken-rs](https://github.com/zurawiki/tiktoken-rs)\n",
|
|
"\n",
|
|
"(OpenAI makes no endorsements or guarantees of third-party libraries.)\n",
|
|
"\n",
|
|
"\n",
|
|
"## How strings are typically tokenized\n",
|
|
"\n",
|
|
"In English, tokens commonly range in length from one character to one word (e.g., `\"t\"` or `\" great\"`), though in some languages tokens can be shorter than one character or longer than one word. Spaces are usually grouped with the starts of words (e.g., `\" is\"` instead of `\"is \"` or `\" \"`+`\"is\"`). You can quickly check how a string is tokenized at the [OpenAI Tokenizer](https://beta.openai.com/tokenizer), or the third-party [Tiktokenizer](https://tiktokenizer.vercel.app/) webapp."
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## 0. Install `tiktoken`\n",
|
|
"\n",
|
|
"If needed, install `tiktoken` with `pip`:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.2\u001b[0m\n",
|
|
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
|
|
"Note: you may need to restart the kernel to use updated packages.\n",
|
|
"\n",
|
|
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.2\u001b[0m\n",
|
|
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
|
|
"Note: you may need to restart the kernel to use updated packages.\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"%pip install --upgrade tiktoken -q\n",
|
|
"%pip install --upgrade openai -q"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## 1. Import `tiktoken`"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import tiktoken"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## 2. Load an encoding\n",
|
|
"\n",
|
|
"Use `tiktoken.get_encoding()` to load an encoding by name.\n",
|
|
"\n",
|
|
"The first time this runs, it will require an internet connection to download. Later runs won't need an internet connection."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"encoding = tiktoken.get_encoding(\"cl100k_base\")\n"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Use `tiktoken.encoding_for_model()` to automatically load the correct encoding for a given model name."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"encoding = tiktoken.encoding_for_model(\"gpt-4o-mini\")"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## 3. Turn text into tokens with `encoding.encode()`\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"The `.encode()` method converts a text string into a list of token integers."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[83, 8251, 2488, 382, 2212, 0]"
|
|
]
|
|
},
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"encoding.encode(\"tiktoken is great!\")"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Count tokens by counting the length of the list returned by `.encode()`."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def num_tokens_from_string(string: str, encoding_name: str) -> int:\n",
|
|
" \"\"\"Returns the number of tokens in a text string.\"\"\"\n",
|
|
" encoding = tiktoken.get_encoding(encoding_name)\n",
|
|
" num_tokens = len(encoding.encode(string))\n",
|
|
" return num_tokens"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"6"
|
|
]
|
|
},
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"num_tokens_from_string(\"tiktoken is great!\", \"o200k_base\")"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## 4. Turn tokens into text with `encoding.decode()`"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"`.decode()` converts a list of token integers to a string."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"'tiktoken is great!'"
|
|
]
|
|
},
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"encoding.decode([83, 8251, 2488, 382, 2212, 0])"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Warning: although `.decode()` can be applied to single tokens, beware that it can be lossy for tokens that aren't on utf-8 boundaries."
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"For single tokens, `.decode_single_token_bytes()` safely converts a single integer token to the bytes it represents."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[b't', b'ikt', b'oken', b' is', b' great', b'!']"
|
|
]
|
|
},
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"[encoding.decode_single_token_bytes(token) for token in [83, 8251, 2488, 382, 2212, 0]]\n"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"(The `b` in front of the strings indicates that the strings are byte strings.)"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## 5. Comparing encodings\n",
|
|
"\n",
|
|
"Different encodings vary in how they split words, group spaces, and handle non-English characters. Using the methods above, we can compare different encodings on a few example strings."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def compare_encodings(example_string: str) -> None:\n",
|
|
" \"\"\"Prints a comparison of three string encodings.\"\"\"\n",
|
|
" # print the example string\n",
|
|
" print(f'\\nExample string: \"{example_string}\"')\n",
|
|
" # for each encoding, print the # of tokens, the token integers, and the token bytes\n",
|
|
" for encoding_name in [\"r50k_base\", \"p50k_base\", \"cl100k_base\", \"o200k_base\"]:\n",
|
|
" encoding = tiktoken.get_encoding(encoding_name)\n",
|
|
" token_integers = encoding.encode(example_string)\n",
|
|
" num_tokens = len(token_integers)\n",
|
|
" token_bytes = [encoding.decode_single_token_bytes(token) for token in token_integers]\n",
|
|
" print()\n",
|
|
" print(f\"{encoding_name}: {num_tokens} tokens\")\n",
|
|
" print(f\"token integers: {token_integers}\")\n",
|
|
" print(f\"token bytes: {token_bytes}\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"Example string: \"antidisestablishmentarianism\"\n",
|
|
"\n",
|
|
"r50k_base: 5 tokens\n",
|
|
"token integers: [415, 29207, 44390, 3699, 1042]\n",
|
|
"token bytes: [b'ant', b'idis', b'establishment', b'arian', b'ism']\n",
|
|
"\n",
|
|
"p50k_base: 5 tokens\n",
|
|
"token integers: [415, 29207, 44390, 3699, 1042]\n",
|
|
"token bytes: [b'ant', b'idis', b'establishment', b'arian', b'ism']\n",
|
|
"\n",
|
|
"cl100k_base: 6 tokens\n",
|
|
"token integers: [519, 85342, 34500, 479, 8997, 2191]\n",
|
|
"token bytes: [b'ant', b'idis', b'establish', b'ment', b'arian', b'ism']\n",
|
|
"\n",
|
|
"o200k_base: 6 tokens\n",
|
|
"token integers: [493, 129901, 376, 160388, 21203, 2367]\n",
|
|
"token bytes: [b'ant', b'idis', b'est', b'ablishment', b'arian', b'ism']\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"compare_encodings(\"antidisestablishmentarianism\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"Example string: \"2 + 2 = 4\"\n",
|
|
"\n",
|
|
"r50k_base: 5 tokens\n",
|
|
"token integers: [17, 1343, 362, 796, 604]\n",
|
|
"token bytes: [b'2', b' +', b' 2', b' =', b' 4']\n",
|
|
"\n",
|
|
"p50k_base: 5 tokens\n",
|
|
"token integers: [17, 1343, 362, 796, 604]\n",
|
|
"token bytes: [b'2', b' +', b' 2', b' =', b' 4']\n",
|
|
"\n",
|
|
"cl100k_base: 7 tokens\n",
|
|
"token integers: [17, 489, 220, 17, 284, 220, 19]\n",
|
|
"token bytes: [b'2', b' +', b' ', b'2', b' =', b' ', b'4']\n",
|
|
"\n",
|
|
"o200k_base: 7 tokens\n",
|
|
"token integers: [17, 659, 220, 17, 314, 220, 19]\n",
|
|
"token bytes: [b'2', b' +', b' ', b'2', b' =', b' ', b'4']\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"compare_encodings(\"2 + 2 = 4\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"Example string: \"お誕生日おめでとう\"\n",
|
|
"\n",
|
|
"r50k_base: 14 tokens\n",
|
|
"token integers: [2515, 232, 45739, 243, 37955, 33768, 98, 2515, 232, 1792, 223, 30640, 30201, 29557]\n",
|
|
"token bytes: [b'\\xe3\\x81', b'\\x8a', b'\\xe8\\xaa', b'\\x95', b'\\xe7\\x94\\x9f', b'\\xe6\\x97', b'\\xa5', b'\\xe3\\x81', b'\\x8a', b'\\xe3\\x82', b'\\x81', b'\\xe3\\x81\\xa7', b'\\xe3\\x81\\xa8', b'\\xe3\\x81\\x86']\n",
|
|
"\n",
|
|
"p50k_base: 14 tokens\n",
|
|
"token integers: [2515, 232, 45739, 243, 37955, 33768, 98, 2515, 232, 1792, 223, 30640, 30201, 29557]\n",
|
|
"token bytes: [b'\\xe3\\x81', b'\\x8a', b'\\xe8\\xaa', b'\\x95', b'\\xe7\\x94\\x9f', b'\\xe6\\x97', b'\\xa5', b'\\xe3\\x81', b'\\x8a', b'\\xe3\\x82', b'\\x81', b'\\xe3\\x81\\xa7', b'\\xe3\\x81\\xa8', b'\\xe3\\x81\\x86']\n",
|
|
"\n",
|
|
"cl100k_base: 9 tokens\n",
|
|
"token integers: [33334, 45918, 243, 21990, 9080, 33334, 62004, 16556, 78699]\n",
|
|
"token bytes: [b'\\xe3\\x81\\x8a', b'\\xe8\\xaa', b'\\x95', b'\\xe7\\x94\\x9f', b'\\xe6\\x97\\xa5', b'\\xe3\\x81\\x8a', b'\\xe3\\x82\\x81', b'\\xe3\\x81\\xa7', b'\\xe3\\x81\\xa8\\xe3\\x81\\x86']\n",
|
|
"\n",
|
|
"o200k_base: 8 tokens\n",
|
|
"token integers: [8930, 9697, 243, 128225, 8930, 17693, 4344, 48669]\n",
|
|
"token bytes: [b'\\xe3\\x81\\x8a', b'\\xe8\\xaa', b'\\x95', b'\\xe7\\x94\\x9f\\xe6\\x97\\xa5', b'\\xe3\\x81\\x8a', b'\\xe3\\x82\\x81', b'\\xe3\\x81\\xa7', b'\\xe3\\x81\\xa8\\xe3\\x81\\x86']\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"compare_encodings(\"お誕生日おめでとう\")"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## 6. Counting tokens for chat completions API calls\n",
|
|
"\n",
|
|
"ChatGPT models like `gpt-4o-mini` and `gpt-4` use tokens in the same way as older completions models, but because of their message-based formatting, it's more difficult to count how many tokens will be used by a conversation.\n",
|
|
"\n",
|
|
"Below is an example function for counting tokens for messages passed to `gpt-3.5-turbo`, `gpt-4`, `gpt-4o` and `gpt-4o-mini`.\n",
|
|
"\n",
|
|
"Note that the exact way that tokens are counted from messages may change from model to model. Consider the counts from the function below an estimate, not a timeless guarantee.\n",
|
|
"\n",
|
|
"In particular, requests that use the optional functions input will consume extra tokens on top of the estimates calculated below."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 14,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def num_tokens_from_messages(messages, model=\"gpt-4o-mini-2024-07-18\"):\n",
|
|
" \"\"\"Return the number of tokens used by a list of messages.\"\"\"\n",
|
|
" try:\n",
|
|
" encoding = tiktoken.encoding_for_model(model)\n",
|
|
" except KeyError:\n",
|
|
" print(\"Warning: model not found. Using o200k_base encoding.\")\n",
|
|
" encoding = tiktoken.get_encoding(\"o200k_base\")\n",
|
|
" if model in {\n",
|
|
" \"gpt-3.5-turbo-0125\",\n",
|
|
" \"gpt-4-0314\",\n",
|
|
" \"gpt-4-32k-0314\",\n",
|
|
" \"gpt-4-0613\",\n",
|
|
" \"gpt-4-32k-0613\",\n",
|
|
" \"gpt-4o-mini-2024-07-18\",\n",
|
|
" \"gpt-4o-2024-08-06\"\n",
|
|
" }:\n",
|
|
" tokens_per_message = 3\n",
|
|
" tokens_per_name = 1\n",
|
|
" elif \"gpt-3.5-turbo\" in model:\n",
|
|
" print(\"Warning: gpt-3.5-turbo may update over time. Returning num tokens assuming gpt-3.5-turbo-0125.\")\n",
|
|
" return num_tokens_from_messages(messages, model=\"gpt-3.5-turbo-0125\")\n",
|
|
" elif \"gpt-4o-mini\" in model:\n",
|
|
" print(\"Warning: gpt-4o-mini may update over time. Returning num tokens assuming gpt-4o-mini-2024-07-18.\")\n",
|
|
" return num_tokens_from_messages(messages, model=\"gpt-4o-mini-2024-07-18\")\n",
|
|
" elif \"gpt-4o\" in model:\n",
|
|
" print(\"Warning: gpt-4o and gpt-4o-mini may update over time. Returning num tokens assuming gpt-4o-2024-08-06.\")\n",
|
|
" return num_tokens_from_messages(messages, model=\"gpt-4o-2024-08-06\")\n",
|
|
" elif \"gpt-4\" in model:\n",
|
|
" print(\"Warning: gpt-4 may update over time. Returning num tokens assuming gpt-4-0613.\")\n",
|
|
" return num_tokens_from_messages(messages, model=\"gpt-4-0613\")\n",
|
|
" else:\n",
|
|
" raise NotImplementedError(\n",
|
|
" f\"\"\"num_tokens_from_messages() is not implemented for model {model}.\"\"\"\n",
|
|
" )\n",
|
|
" num_tokens = 0\n",
|
|
" for message in messages:\n",
|
|
" num_tokens += tokens_per_message\n",
|
|
" for key, value in message.items():\n",
|
|
" num_tokens += len(encoding.encode(value))\n",
|
|
" if key == \"name\":\n",
|
|
" num_tokens += tokens_per_name\n",
|
|
" num_tokens += 3 # every reply is primed with <|start|>assistant<|message|>\n",
|
|
" return num_tokens\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 15,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"gpt-3.5-turbo\n",
|
|
"Warning: gpt-3.5-turbo may update over time. Returning num tokens assuming gpt-3.5-turbo-0125.\n",
|
|
"129 prompt tokens counted by num_tokens_from_messages().\n",
|
|
"129 prompt tokens counted by the OpenAI API.\n",
|
|
"\n",
|
|
"gpt-4-0613\n",
|
|
"129 prompt tokens counted by num_tokens_from_messages().\n",
|
|
"129 prompt tokens counted by the OpenAI API.\n",
|
|
"\n",
|
|
"gpt-4\n",
|
|
"Warning: gpt-4 may update over time. Returning num tokens assuming gpt-4-0613.\n",
|
|
"129 prompt tokens counted by num_tokens_from_messages().\n",
|
|
"129 prompt tokens counted by the OpenAI API.\n",
|
|
"\n",
|
|
"gpt-4o\n",
|
|
"Warning: gpt-4o and gpt-4o-mini may update over time. Returning num tokens assuming gpt-4o-2024-08-06.\n",
|
|
"124 prompt tokens counted by num_tokens_from_messages().\n",
|
|
"124 prompt tokens counted by the OpenAI API.\n",
|
|
"\n",
|
|
"gpt-4o-mini\n",
|
|
"Warning: gpt-4o-mini may update over time. Returning num tokens assuming gpt-4o-mini-2024-07-18.\n",
|
|
"124 prompt tokens counted by num_tokens_from_messages().\n",
|
|
"124 prompt tokens counted by the OpenAI API.\n",
|
|
"\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# let's verify the function above matches the OpenAI API response\n",
|
|
"\n",
|
|
"from openai import OpenAI\n",
|
|
"import os\n",
|
|
"\n",
|
|
"client = OpenAI(api_key=os.environ.get(\"OPENAI_API_KEY\", \"<your OpenAI API key if not set as env var>\"))\n",
|
|
"\n",
|
|
"example_messages = [\n",
|
|
" {\n",
|
|
" \"role\": \"system\",\n",
|
|
" \"content\": \"You are a helpful, pattern-following assistant that translates corporate jargon into plain English.\",\n",
|
|
" },\n",
|
|
" {\n",
|
|
" \"role\": \"system\",\n",
|
|
" \"name\": \"example_user\",\n",
|
|
" \"content\": \"New synergies will help drive top-line growth.\",\n",
|
|
" },\n",
|
|
" {\n",
|
|
" \"role\": \"system\",\n",
|
|
" \"name\": \"example_assistant\",\n",
|
|
" \"content\": \"Things working well together will increase revenue.\",\n",
|
|
" },\n",
|
|
" {\n",
|
|
" \"role\": \"system\",\n",
|
|
" \"name\": \"example_user\",\n",
|
|
" \"content\": \"Let's circle back when we have more bandwidth to touch base on opportunities for increased leverage.\",\n",
|
|
" },\n",
|
|
" {\n",
|
|
" \"role\": \"system\",\n",
|
|
" \"name\": \"example_assistant\",\n",
|
|
" \"content\": \"Let's talk later when we're less busy about how to do better.\",\n",
|
|
" },\n",
|
|
" {\n",
|
|
" \"role\": \"user\",\n",
|
|
" \"content\": \"This late pivot means we don't have time to boil the ocean for the client deliverable.\",\n",
|
|
" },\n",
|
|
"]\n",
|
|
"\n",
|
|
"for model in [\n",
|
|
" \"gpt-3.5-turbo\",\n",
|
|
" \"gpt-4-0613\",\n",
|
|
" \"gpt-4\",\n",
|
|
" \"gpt-4o\",\n",
|
|
" \"gpt-4o-mini\"\n",
|
|
" ]:\n",
|
|
" print(model)\n",
|
|
" # example token count from the function defined above\n",
|
|
" print(f\"{num_tokens_from_messages(example_messages, model)} prompt tokens counted by num_tokens_from_messages().\")\n",
|
|
" # example token count from the OpenAI API\n",
|
|
" response = client.chat.completions.create(model=model,\n",
|
|
" messages=example_messages,\n",
|
|
" temperature=0,\n",
|
|
" max_tokens=1)\n",
|
|
" print(f'{response.usage.prompt_tokens} prompt tokens counted by the OpenAI API.')\n",
|
|
" print()\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## 7. Counting tokens for chat completions with tool calls\n",
|
|
"\n",
|
|
"Next, we will look into how to apply this calculations to messages that may contain function calls. This is not immediately trivial, due to the formatting of the tools themselves. \n",
|
|
"\n",
|
|
"Below is an example function for counting tokens for messages that contain tools, passed to `gpt-3.5-turbo`, `gpt-4`, `gpt-4o` and `gpt-4o-mini`."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 16,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def num_tokens_for_tools(functions, messages, model):\n",
|
|
" \n",
|
|
" # Initialize function settings to 0\n",
|
|
" func_init = 0\n",
|
|
" prop_init = 0\n",
|
|
" prop_key = 0\n",
|
|
" enum_init = 0\n",
|
|
" enum_item = 0\n",
|
|
" func_end = 0\n",
|
|
" \n",
|
|
" if model in [\n",
|
|
" \"gpt-4o\",\n",
|
|
" \"gpt-4o-mini\"\n",
|
|
" ]:\n",
|
|
" \n",
|
|
" # Set function settings for the above models\n",
|
|
" func_init = 7\n",
|
|
" prop_init = 3\n",
|
|
" prop_key = 3\n",
|
|
" enum_init = -3\n",
|
|
" enum_item = 3\n",
|
|
" func_end = 12\n",
|
|
" elif model in [\n",
|
|
" \"gpt-3.5-turbo\",\n",
|
|
" \"gpt-4\"\n",
|
|
" ]:\n",
|
|
" # Set function settings for the above models\n",
|
|
" func_init = 10\n",
|
|
" prop_init = 3\n",
|
|
" prop_key = 3\n",
|
|
" enum_init = -3\n",
|
|
" enum_item = 3\n",
|
|
" func_end = 12\n",
|
|
" else:\n",
|
|
" raise NotImplementedError(\n",
|
|
" f\"\"\"num_tokens_for_tools() is not implemented for model {model}.\"\"\"\n",
|
|
" )\n",
|
|
" \n",
|
|
" try:\n",
|
|
" encoding = tiktoken.encoding_for_model(model)\n",
|
|
" except KeyError:\n",
|
|
" print(\"Warning: model not found. Using o200k_base encoding.\")\n",
|
|
" encoding = tiktoken.get_encoding(\"o200k_base\")\n",
|
|
" \n",
|
|
" func_token_count = 0\n",
|
|
" if len(functions) > 0:\n",
|
|
" for f in functions:\n",
|
|
" func_token_count += func_init # Add tokens for start of each function\n",
|
|
" function = f[\"function\"]\n",
|
|
" f_name = function[\"name\"]\n",
|
|
" f_desc = function[\"description\"]\n",
|
|
" if f_desc.endswith(\".\"):\n",
|
|
" f_desc = f_desc[:-1]\n",
|
|
" line = f_name + \":\" + f_desc\n",
|
|
" func_token_count += len(encoding.encode(line)) # Add tokens for set name and description\n",
|
|
" if len(function[\"parameters\"][\"properties\"]) > 0:\n",
|
|
" func_token_count += prop_init # Add tokens for start of each property\n",
|
|
" for key in list(function[\"parameters\"][\"properties\"].keys()):\n",
|
|
" func_token_count += prop_key # Add tokens for each set property\n",
|
|
" p_name = key\n",
|
|
" p_type = function[\"parameters\"][\"properties\"][key][\"type\"]\n",
|
|
" p_desc = function[\"parameters\"][\"properties\"][key][\"description\"]\n",
|
|
" if \"enum\" in function[\"parameters\"][\"properties\"][key].keys():\n",
|
|
" func_token_count += enum_init # Add tokens if property has enum list\n",
|
|
" for item in function[\"parameters\"][\"properties\"][key][\"enum\"]:\n",
|
|
" func_token_count += enum_item\n",
|
|
" func_token_count += len(encoding.encode(item))\n",
|
|
" if p_desc.endswith(\".\"):\n",
|
|
" p_desc = p_desc[:-1]\n",
|
|
" line = f\"{p_name}:{p_type}:{p_desc}\"\n",
|
|
" func_token_count += len(encoding.encode(line))\n",
|
|
" func_token_count += func_end\n",
|
|
" \n",
|
|
" messages_token_count = num_tokens_from_messages(messages, model)\n",
|
|
" total_tokens = messages_token_count + func_token_count\n",
|
|
" \n",
|
|
" return total_tokens"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 17,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"gpt-3.5-turbo\n",
|
|
"Warning: gpt-3.5-turbo may update over time. Returning num tokens assuming gpt-3.5-turbo-0125.\n",
|
|
"105 prompt tokens counted by num_tokens_for_tools().\n",
|
|
"105 prompt tokens counted by the OpenAI API.\n",
|
|
"\n",
|
|
"gpt-4\n",
|
|
"Warning: gpt-4 may update over time. Returning num tokens assuming gpt-4-0613.\n",
|
|
"105 prompt tokens counted by num_tokens_for_tools().\n",
|
|
"105 prompt tokens counted by the OpenAI API.\n",
|
|
"\n",
|
|
"gpt-4o\n",
|
|
"Warning: gpt-4o and gpt-4o-mini may update over time. Returning num tokens assuming gpt-4o-2024-08-06.\n",
|
|
"101 prompt tokens counted by num_tokens_for_tools().\n",
|
|
"101 prompt tokens counted by the OpenAI API.\n",
|
|
"\n",
|
|
"gpt-4o-mini\n",
|
|
"Warning: gpt-4o-mini may update over time. Returning num tokens assuming gpt-4o-mini-2024-07-18.\n",
|
|
"101 prompt tokens counted by num_tokens_for_tools().\n",
|
|
"101 prompt tokens counted by the OpenAI API.\n",
|
|
"\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"tools = [\n",
|
|
" {\n",
|
|
" \"type\": \"function\",\n",
|
|
" \"function\": {\n",
|
|
" \"name\": \"get_current_weather\",\n",
|
|
" \"description\": \"Get the current weather in a given location\",\n",
|
|
" \"parameters\": {\n",
|
|
" \"type\": \"object\",\n",
|
|
" \"properties\": {\n",
|
|
" \"location\": {\n",
|
|
" \"type\": \"string\",\n",
|
|
" \"description\": \"The city and state, e.g. San Francisco, CA\",\n",
|
|
" },\n",
|
|
" \"unit\": {\"type\": \"string\", \n",
|
|
" \"description\": \"The unit of temperature to return\",\n",
|
|
" \"enum\": [\"celsius\", \"fahrenheit\"]},\n",
|
|
" },\n",
|
|
" \"required\": [\"location\"],\n",
|
|
" },\n",
|
|
" }\n",
|
|
" }\n",
|
|
"]\n",
|
|
"\n",
|
|
"example_messages = [\n",
|
|
" {\n",
|
|
" \"role\": \"system\",\n",
|
|
" \"content\": \"You are a helpful assistant that can answer to questions about the weather.\",\n",
|
|
" },\n",
|
|
" {\n",
|
|
" \"role\": \"user\",\n",
|
|
" \"content\": \"What's the weather like in San Francisco?\",\n",
|
|
" },\n",
|
|
"]\n",
|
|
"\n",
|
|
"for model in [\n",
|
|
" \"gpt-3.5-turbo\",\n",
|
|
" \"gpt-4\",\n",
|
|
" \"gpt-4o\",\n",
|
|
" \"gpt-4o-mini\"\n",
|
|
" ]:\n",
|
|
" print(model)\n",
|
|
" # example token count from the function defined above\n",
|
|
" print(f\"{num_tokens_for_tools(tools, example_messages, model)} prompt tokens counted by num_tokens_for_tools().\")\n",
|
|
" # example token count from the OpenAI API\n",
|
|
" response = client.chat.completions.create(model=model,\n",
|
|
" messages=example_messages,\n",
|
|
" tools=tools,\n",
|
|
" temperature=0)\n",
|
|
" print(f'{response.usage.prompt_tokens} prompt tokens counted by the OpenAI API.')\n",
|
|
" print()"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.7"
|
|
},
|
|
"vscode": {
|
|
"interpreter": {
|
|
"hash": "365536dcbde60510dc9073d6b991cd35db2d9bac356a11f5b64279a5e6708b97"
|
|
}
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|